Integrating Breeding Tools to Generate Information for Efficient Breeding: Past, Present, and Future

Author(s):  
M. Cooper ◽  
O. S. Smith ◽  
R. E. Merrill ◽  
L. Arthur ◽  
D. W. Podlich ◽  
...  
Keyword(s):  
Author(s):  
Priyanka Choudhary ◽  
Ramesh Chand ◽  
Anil Kumar Singh

Background: Cercospora leaf spot (CLS) is a fungal disease of mungbean [Vigna radiata (L.) Wilczek] caused by Cercospora canescens and now emerged as an important biotic stress. A better understanding of the genetics of CLS resistance will help in formulating efficient breeding procedures in mungbean.Methods: The present investigation focused on genetics of CLS resistance through generation mean analysis (six parameter model) in two intra-specific mungbean crosses namely, Kopergaon × HUM12 and Kopergaon × ML1720. Four quantitative disease resistance components, viz., Area under disease progress curve (AUDPC), Incubation period (IP), Latent period (LP) and degree of sporulation (SP) were studied.Result: A high correlation of AUDPC with latent period (r = –0.68 to –0.79, P less than 0.0001) and SP (r = 0.72 to -0.81, P less than 0.0001) advocated that both are main contributor for CLS disease development. High heterosis along with high heritability in terms of AUDPC ( greater than 0.09) indicated the importance of genetic factor(s) in controlling CLS resistance. Generation mean analysis of both the crosses revealed duplicate epistatic interaction and involvement of two genes for CLS resistance in terms of AUDPC. This study supports oligogenic nature of inheritance, advocating AUDPC along with IP, LP and SP as important disease indicator for selection of CLS resistance in mungbean.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25737 ◽  
Author(s):  
Yousry A. El-Kassaby ◽  
Eduardo P. Cappa ◽  
Cherdsak Liewlaksaneeyanawin ◽  
Jaroslav Klápště ◽  
Milan Lstibůrek

2013 ◽  
Vol 11 (2) ◽  
pp. 131-139 ◽  
Author(s):  
D. Carputo ◽  
D. Alioto ◽  
R. Aversano ◽  
R. Garramone ◽  
V. Miraglia ◽  
...  

The evolutionary diversity of wild potato species makes them excellent materials for improving the narrow genetic basis of the cultivated potato Solanum tuberosum. Understanding their genetic diversity is important not only to choose the best parents for breeding, but also to design proper crossing schemes and selection strategies. The objectives of this study were to determine the resistance response to Ralstonia solanacearum, Potato virus Y and low temperatures of 21 clones of 12 potato species, and to determine their genetic diversity through simple sequence repeat (SSR) markers. Sources of resistance have been found for all the investigated traits, with high resistance variability not only between but also within species. Combined resistances were also identified, with positive implications for efficient breeding. SSR analysis allowed the detection of 12 loci and 46 alleles across all genotypes, with an average value of 3.8 alleles per locus. Both unique and rare alleles useful for marker-assisted selection were found. SSR-based cluster analysis revealed that resistant genotypes were distributed among all clusters, suggesting that genetically different resistant genotypes were identified. The information obtained in this study is discussed from a breeding perspective.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 203
Author(s):  
Sylwester Sobkowiak ◽  
Marta Janiszewska ◽  
Emil Stefańczyk ◽  
Iwona Wasilewicz-Flis ◽  
Jadwiga Śliwka

Tuber dry rot is an important disease of potato caused by soil and seed-borne pathogens of the Fusarium genus leading to losses that may reach 60% of the yield. The goal of this work was to study the inheritance of the dry rot resistance in two diploid potato hybrid populations (11-36 and 12-3) with complex pedigrees, including several wild Solanum spp. We used an aggressive isolate of F. sambucinum for phenotyping both progenies, parents, and standard potato cultivars in laboratory tuber tests, in three subsequent years. The QTL for dry rot resistance were mapped by interval mapping on existing genetic maps of both mapping populations. The most important and reproducible QTL for this trait was mapped on chromosome I and additional year- and population-specific QTL were mapped on chromosomes II, VII, IX, XI, and XII, confirming polygenic control of this resistance. This is the first study mapping the loci affecting tuber dry rot resistance in potato genome that can contribute to better understanding of potato-F. sambucinum interaction and to more efficient breeding of resistant potato cultivars.


2020 ◽  
Author(s):  
Michael C. Fontaine ◽  
Frédéric Labbé ◽  
Yann Dussert ◽  
Laurent Delière ◽  
Sylvie Richart-Cervera ◽  
...  

AbstractEurope is the historical cradle of viticulture, but grapevines have been increasingly threatened by pathogens of American origin. The invasive oomycete Plasmopara viticola causes downy mildew, one of the most devastating grapevine diseases worldwide. Despite major economic consequences, its invasion history remains poorly understood. Comprehensive population genetic analyses of ~2000 samples from the most important wine-producing countries revealed very low genetic diversity in invasive downy mildew populations worldwide. All the populations originated from one of five native North American lineages, the one parasitizing wild summer grape. After an initial introduction into Europe, invasive European populations served as a secondary source of introduction into vineyards worldwide, including China, South Africa and, twice independently, Australia. Invasion of Argentina probably represents a tertiary introduction from Australia. Our findings provide a striking example of a global pathogen invasion resulting from secondary dispersal of a successful invasive population. It will help designing quarantine regulations and efficient breeding for resistance against grapevine downy mildew.


2018 ◽  
Vol 22 (5) ◽  
pp. 536-543 ◽  
Author(s):  
A. Zatybekov ◽  
S. Abugalieva ◽  
S. Didorenko ◽  
A. Rsaliyev ◽  
Y. Turuspekov

Soybean (Glycine max(L.) Merr) is an essential food, feed, and technical culture. In Kazakhstan the area under soybean is increasing every year, helping to solve the problem of protein deficiency in human nutrition and animal feeding. One of the main problems of soybean production is fungal diseases causing yields losses of up to 30 %. Modern genomic studies can be applied to facilitate efficient breeding research for improvement of soybean fungal disease tolerance. Therefore, the objective of this genome-wide association study (GWAS) was analysis of a soybean collection consisting of 182 accessions in relation to fungal diseases in the conditions of South East and South Kazakh­stan. Field evaluation of the soybean collection suggested thatFusariumspp. andCercospora sojinaaffected plants in the South region (RIBSP), andSeptoria glycines– in the South East region (KRIAPP). The major objective of the study was identification of QTL associated with resistance to fusarium root rot (FUS), frogeye leaf spot (FLS), and brown spot (BS). GWAS using 4 442 SNP (single nucleotide polymorphism) markers of Illumina iSelect array allowed for identification of fifteen marker trait associations (MTA) resistant to the three diseases at two different stages of growth. Two QTL both for FUS (chromosomes 13 and 17) and BS (chromosomes 14 and 17) were genetically mapped, including one presumably novel QTL for BS (chromo­some 17). Also, five presumably novel QTL for FLS were genetically mapped on chromosomes 2, 7, and 15. The results can be used for improvement of the local breeding projects based on marker-assisted selection approach.          


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2340
Author(s):  
Athanasios I. Gelasakis ◽  
Evridiki Boukouvala ◽  
Maria Babetsa ◽  
Efstathios Katharopoulos ◽  
Vayia Palaska ◽  
...  

Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies.


2021 ◽  
Vol 16 (4) ◽  
pp. 318-326
Author(s):  
Aidar Dastanbekuly Baimukanov ◽  
Yuldashbayev Yusupzhan Artykovich ◽  
Demin Vladimir Alexandrovich ◽  
Magomadov Taram Amkhatovich ◽  
Aubakirov Khamit Ablgazinovich

Sign in / Sign up

Export Citation Format

Share Document