scholarly journals Polymorphisms of Codons 110, 146, 211 and 222 at the Goat PRNP Locus and Their Association with Scrapie in Greece

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2340
Author(s):  
Athanasios I. Gelasakis ◽  
Evridiki Boukouvala ◽  
Maria Babetsa ◽  
Efstathios Katharopoulos ◽  
Vayia Palaska ◽  
...  

Scrapie is considered an endemic disease in both sheep and goats in Greece. However, contrary to sheep, in goats more than one prion protein (PrP) polymorphism has been recognized as a candidate for resistance breeding against the disease. For an impression, candidates which are circulating, (i) brain samples (n = 525) from scrapie-affected (n = 282) and non-affected (n = 243) animals within the national surveillance program, and (ii) individual blood samples (n = 1708) from affected (n = 241) and non-affected (n = 1467) herds, in a large part of mainland Greece and its islands, were collected and assayed. A dedicated Taqman method was used to test for amino acid polymorphisms 110T/P, 146N/S/D, 211R/Q, and 222Q/K. Highly prevalent genotypes were 110TT, 146NN, 211RR, and 222QQ. The frequencies of polymorphisms in blood and negative brain samples for codons 110P, 211Q, and 222K were 4.0%, 3.0%, and 1.9%, respectively, while 146D (0.7%) was present only on Karpathos island. Codon 110P was exclusively found in scrapie-negative brains, and homozygous 110P/P in two scrapie-negative goats. It is concluded that breeding programs in Karpathos could focus on codon 146D, while in other regions carriers of the 110P and 222K allele should be sought. Case-control and challenge studies are now necessary to elucidate the most efficient breeding strategies.

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 221
Author(s):  
Elsa Mecha ◽  
Sofia Natalello ◽  
Bruna Carbas ◽  
Andreia Bento da Silva ◽  
Susana T. Leitão ◽  
...  

The common bean (Phaseolus vulgaris L.) represents a sustainable and affordable source of protein, namely, to populations with vegetarian dietary habits. Despite the national germplasm genetic diversity, little is known about the Portuguese accessions’ nutritional and protein quality, leading to their underuse in breeding programs. To fill this gap, a representative collection (106 accessions) was cropped under two contrasting environments (traditional versus heat stress) and evaluated in terms of nutritional quality by near-infrared spectroscopy. Protein quality was assessed, under the stressful environment, considering the individual amino acid contents and the activity of trypsin inhibitors through mass spectrometry (LC-MS/MS) and spectrophotometry, respectively. On top of strong genotypic control, the nutritional composition (protein, fat, fiber, moisture and ash) was also highly influenced by the environment and by genotype × environment interaction, with a clear nutritional quality ranking change for the accessions in heat stress conditions. Classified into three clusters, the accessions from the cluster with the highest individual amino acid and protein contents also showed higher trypsin inhibitor activity (TIA). Since different levels of TIA had no translation into contrasting protein digestibility, breeders focusing on common beans’ protein quality improvement, especially under challenging warming climate conditions, may take advantage of this group of accessions.


2020 ◽  
Vol 10 (01) ◽  
pp. e148-e158
Author(s):  
Vahid Mansouri ◽  
Marjan Mansourian ◽  
Mostafa Qorbani ◽  
Roya Riahi ◽  
Rahele Karimi ◽  
...  

AbstractThe interaction between several lifestyle and obesogenic environmental factors is considered as the main underlying factor for the escalating trend of childhood obesity and its adverse consequences. In this study, we assessed the mutual influence of lifestyle habits and body mass index (BMI) as well as risk factors for cardiometabolic, hepatic, and renal disorders to define the causality power of each item. This nationwide cross-sectional study was conducted as the fifth round of a school-based surveillance program. Overall, 14,800 students living in Iran were studied, and blood samples were obtained from 4,200 of them. Demographic factors, anthropometric and biochemical measures were used to define lifestyle-related latent variables as well as cardiac, renal, and hepatic risk indicators. Total, direct, and indirect effects between factors were analyzed using the standardized regression weights for each pathway. Data from 14,274 students (participation rate of 99%) and 3,843 blood samples were included. All of the latent variables had a significant direct effect on BMI, with the most potent effect of unhealthy nutrition (β ≅ 0.63) in boys and girls. BMI has significant direct effects on risk indicators of cardiovascular, renal, and hepatic diseases with the most powerful effect on cardiovascular risk factors (β ≅  − 0.08). The most important predisposing factor for obesity was unhealthy nutrition, whereas increased activity, adequate sleep, and better hygiene had protective roles. BMI shows the strongest association with indicator of cardiovascular diseases. These findings underscore the importance of implementing public health programs for the prevention of chronic noncommunicable diseases.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1384
Author(s):  
Dinar S. C. Wahyuni ◽  
Young Hae Choi ◽  
Kirsten A. Leiss ◽  
Peter G. L. Klinkhamer

Understanding the mechanisms involved in host plant resistance opens the way for improved resistance breeding programs by using the traits involved as markers. Pest management is a major problem in cultivation of ornamentals. Gladiolus (Gladiolus hybridus L.) is an economically important ornamental in the Netherlands. Gladiolus is especially sensitive to attack by western flower thrips (Frankliniella occidentalis (Pergande) (Thysanoptera:Thripidae)). The objective of this study was, therefore, to investigate morphological and chemical markers for resistance breeding to western flower thrips in Gladiolus varieties. We measured thrips damage of 14 Gladiolus varieties in a whole-plant thrips bioassay and related this to morphological traits with a focus on papillae density. Moreover, we studied chemical host plant resistance to using an eco-metabolomic approach comparing the 1H NMR profiles of thrips resistant and susceptible varieties representing a broad range of papillae densities. Thrips damage varied strongly among varieties: the most susceptible variety showed 130 times more damage than the most resistant one. Varieties with low thrips damage had shorter mesophylls and epidermal cells, as well as a higher density of epicuticular papillae. All three traits related to thrips damage were highly correlated with each other. We observed a number of metabolites related to resistance against thrips: two unidentified triterpenoid saponins and the amino acids alanine and threonine. All these compounds were highly correlated amongst each other as well as to the density of papillae. These correlations suggest that papillae are involved in resistance to thrips by producing and/or storing compounds causing thrips resistance. Although it is not possible to distinguish the individual effects of morphological and chemical traits statistically, our results show that papillae density is an easy marker in Gladiolus-breeding programs targeted at increased resistance to thrips.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Erica Ponzi ◽  
Magne Thoresen ◽  
Therese Haugdahl Nøst ◽  
Kajsa Møllersen

Abstract Background Cancer genomic studies often include data collected from several omics platforms. Each omics data source contributes to the understanding of the underlying biological process via source specific (“individual”) patterns of variability. At the same time, statistical associations and potential interactions among the different data sources can reveal signals from common biological processes that might not be identified by single source analyses. These common patterns of variability are referred to as “shared” or “joint”. In this work, we show how the use of joint and individual components can lead to better predictive models, and to a deeper understanding of the biological process at hand. We identify joint and individual contributions of DNA methylation, miRNA and mRNA expression collected from blood samples in a lung cancer case–control study nested within the Norwegian Women and Cancer (NOWAC) cohort study, and we use such components to build prediction models for case–control and metastatic status. To assess the quality of predictions, we compare models based on simultaneous, integrative analysis of multi-source omics data to a standard non-integrative analysis of each single omics dataset, and to penalized regression models. Additionally, we apply the proposed approach to a breast cancer dataset from The Cancer Genome Atlas. Results Our results show how an integrative analysis that preserves both components of variation is more appropriate than standard multi-omics analyses that are not based on such a distinction. Both joint and individual components are shown to contribute to a better quality of model predictions, and facilitate the interpretation of the underlying biological processes in lung cancer development. Conclusions In the presence of multiple omics data sources, we recommend the use of data integration techniques that preserve the joint and individual components across the omics sources. We show how the inclusion of such components increases the quality of model predictions of clinical outcomes.


2019 ◽  
Vol 15 ◽  
pp. 01006
Author(s):  
K. Margaryan ◽  
E. Maul ◽  
Z. Muradyan ◽  
A. Hovhannisyan ◽  
G. Melyan ◽  
...  

Crop wild relatives provide a useful source of genetic variation and represent a large pool of genetic diversity for new allelic variation required in breeding programs. Armenia is an important center of origin both for cultivated Vitis vinifera ssp. sativa and wild Vitis vinifera ssp. sylvestris. Owing to recent prospection in Armenian woods and river floodplains many forms of wild grapevine were discovered and inventoried, which is an important prerequisite to unlock their breeding potential in the future. The fact that some genotypes of V. sylvestris can withstand the diseases is likely to be due to a more efficient basal immunity. The overall goal of the proposed research was to characterize the diversity of V. sylvestris from Armenia with respect to its capacity for stilbene biosynthesis, which might be exploited as genetic resource for resistance breeding. The realized research stimulates the recovery, characterization and preservation of wild grape germplasm, presently at risk of extinction. The recovery and characterization of wild genotypes will be the base of selection of genetic traits important in breeding programs for the generation of biotic and changing climate tolerant grapevine varieties and rootstocks, both necessary for the future of viticulture in Armenia and in Europe.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Therese H. Nøst ◽  
Marit Holden ◽  
Tom Dønnem ◽  
Hege Bøvelstad ◽  
Charlotta Rylander ◽  
...  

AbstractRecent studies have indicated that there are functional genomic signals that can be detected in blood years before cancer diagnosis. This study aimed to assess gene expression in prospective blood samples from the Norwegian Women and Cancer cohort focusing on time to lung cancer diagnosis and metastatic cancer using a nested case–control design. We employed several approaches to statistically analyze the data and the methods indicated that the case–control differences were subtle but most distinguishable in metastatic case–control pairs in the period 0–3 years prior to diagnosis. The genes of interest along with estimated blood cell populations could indicate disruption of immunological processes in blood. The genes identified from approaches focusing on alterations with time to diagnosis were distinct from those focusing on the case–control differences. Our results support that explorative analyses of prospective blood samples could indicate circulating signals of disease-related processes.


2006 ◽  
Vol 89 (3) ◽  
pp. 720-727 ◽  
Author(s):  
Roy Jackman ◽  
David J Everest ◽  
Mary Jo Schmerr ◽  
Mohammed Khawaja ◽  
Pat Keep ◽  
...  

Abstract An analytical method is described for detection of endogenous disease-associated prion protein in the buffy coat fraction from the blood of sheep infected with scrapie. The method has been improved and evaluated for its performance in the preclinical diagnosis of ovine transmissible spongiform encephalopathies. The test system uses a protocol for sample preparation that includes extraction and concentration and a test method that uses a liquid-phase competitive immunoassay for prion protein. Antibodies directed to a peptide sequence at the C-terminus of the prion protein (PrP) and a fluorescein-labeled peptide conjugate are used in the assay. Free zone capillary electrophoresis with laser-induced fluorescence for detection is used to separate the antibody-bound fluorescently labeled peptide and free labeled peptide. In this assay, the PrP competes with the fluorescently labeled peptide for limited antibody binding sites, which results in a reduction of the peak representing the immunocomplex of the antibody bound to the fluorescently labeled peptide. When blood samples from scrapie-infected sheep aged 712 months and of the scrapie-susceptible PrP genotypes VRQ/VRQ and VRQ/ARQ were analyzed, the abnormal PrP was found in blood samples. These results correlated with the post-mortem diagnosis of scrapie. The sheep were preclinical and appeared normal at the time of testing but later died with clinical disease approximately 12 months after testing. In older animals, and those with clinical signs, a smaller percentage of animals tested positive. This study has demonstrated that this technology can be used as a sensitive, rapid preclinical test to detect the disease-associated PrP in the blood of scrapie-infected sheep. Improvements in the extraction protocol and capillary electrophoresis conditions will enhance the robustness of this test.


2001 ◽  
Vol 75 (10) ◽  
pp. 4673-4680 ◽  
Author(s):  
Suzette A. Priola ◽  
Joëlle Chabry ◽  
Kaman Chan

ABSTRACT In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.


Sign in / Sign up

Export Citation Format

Share Document