MUTATION BREEDING IN ORNAMENTALS: AN EFFICIENT BREEDING METHOD?

2003 ◽  
pp. 47-60 ◽  
Author(s):  
A. Schum
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1111
Author(s):  
Natalia Miler ◽  
Iwona Jedrzejczyk ◽  
Seweryn Jakubowski ◽  
Janusz Winiecki

Classical mutation breeding using physical factors is a common breeding method for ornamental crops. The aim of our study was to examine the utility of ovaries excised from irradiated inflorescences of Chrysanthemum × morifolium (Ramat.) as explants for breeding purposes. We studied the in vitro regeneration capacity of the ovaries of two chrysanthemum cultivars: ‘Profesor Jerzy’ and ‘Karolina’ preceded by irradiation with high-energy photons (total dose 5, 10 and 15 Gy) and high-energy electrons (total dose 10 Gy). Growth and inflorescence parameters of greenhouse acclimatized regenerants were recorded, and ploidy level was estimated with flow cytometry. The strong impact of genotype on regeneration efficiency was recorded—cultivar ‘Karolina’ produced only 7 viable shoots, while ‘Profesor Jerzy’ produced totally 428 shoots. With an increase of irradiation dose, the regeneration decreased, the least responsive were explants irradiated with 15 Gy high-energy photons and 10 Gy high-energy electrons. Regenerants of ‘Profesor Jerzy’ obtained from these explants possessed shorter stem and flowered later. The highest number of stable, color and shape inflorescence variations were obtained from explants treated with 10 Gy high-energy photons. Variations of inflorescences were predominantly changes of shape—from full to semi-full. New color phenotypes were dark yellow, light yellow and pinkish, among them only the dark yellow phenotype remained stable during second year cultivation. None of the regenerants were haploid. The application of ovaries irradiated within the whole inflorescence of chrysanthemum can be successfully applied in the breeding programs, provided the mother cultivar regenerate in vitro efficiently.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Xuehui Xie ◽  
Xuewu Yuan ◽  
Na Liu ◽  
Xiaoguang Chen ◽  
Awad Abdelgadir ◽  
...  

In order to improve the bioleaching efficiency of arsenic-rich gold concentrates, a mixed bacterial flora had been developed, and the mutation breeding method was adopted to conduct the research. The original mixed bacterial flora had been enrichedin acid mine drainage of Dexing copper mine, Jiangxi Province, China. It was induced by UV (ultraviolet), ultrasonic, and microwave, and their combination mutation. The most efficient bacterial flora after mutation was collected for further bioleaching of arsenic-rich gold concentrates. Results indicated that the bacterial flora after mutation by UV 60 s combined with ultrasonic 10 min had the best oxidation rate of ferrous, the biggest density of cells, and the most activity of total protein. During bioleaching of arsenic-rich gold concentrates, the density of the mutant bacterial cells reached to1.13×108cells/mL at 15 days, more than 10 times compared with that of the original culture. The extraction of iron reached to 95.7% after 15 days, increased by 9.9% compared with that of the original culture. The extraction of arsenic reached to 92.6% after 12 days, which was increased by 46.1%. These results suggested that optimum combined mutation could improve leaching ability of the bacterial flora more significantly.


Author(s):  
Mohammad Sajjad ◽  
Naqib Ullah Khan ◽  
Samrin Gul ◽  
Shahid Ullah Khan ◽  
Zarina Bibi ◽  
...  

Recurrent selection is a cyclical breeding procedure in which selection is made generation after generation, with a reunion of selected plants to produce a new population for the next cycle of selection. Maize (Zea mays L.) base population 'PSEV3' was developed by using selfed progeny recurrent selection in spring and summer crop seasons during 2014 to 2016. During Summer 2017, two improved maize populations [PSEV3-(S1)-C1 and PSEV3-(S2)-C2], original genotype (PSEV3-C0) and three check varieties (two OPV - open-pollinated varieties - Azam and Jalal, and HV - hybrid variety - Kiramat) were assessed for silking and yield traits across four environments including two planting dates and two sites i.e., Cereal Crops Research Institute (CCRI), Pirsabak - Nowshera, and University of Agriculture (UAP), Peshawar, Pakistan. Genotypes and planting dates enunciated significant (p≤0.01) differences for majority of the traits. Maize improved populations (C1 and C2) enunciated comparable values with early flowering and least cob height compared to base population and check genotypes. On average, PSEV3-(S2)-C2 was foremost and exhibited maximum mean values for yield traits with enhanced grain yield with optimum planting at CCRI, followed by PSEV3-(S1)-C1. Base population - C0 and check genotypes were observed with delayed silking and least grain yield across the environments. Selfed progeny recurrent selection was established as an efficient breeding method in improving maize base populations.


Author(s):  
Kumari Shiwani ◽  
Akhilesh Sharma

Background: The choice of appropriate breeding method for improvement of traits depends largely on gene action. Hence, an understanding of the inheritance of quantitative traits is essential to develop an efficient breeding strategy.Methods: Twelve generations of three inter-varietal crosses involving four diverse parents of garden pea were studied for biochemical traits and powdery mildew disease severity to analyze the nature of gene effects by using generation mean anaylsis.Result: Duplicate type of epistasis was observed for protein content in all or one or other crosses. In most cases, the presences of linkage among interacting genes or higher order interactions at several loci were involved. Non-fixable gene effects were many times higher than fixable one in all the crosses indicating a major role non-additive gene effects in the inheritance of these traits. The type of gene effects along with presence of non-allelic interactions suggested the adoption of population improvement methods to break undesirable linkages through recombination. The other alternative can be to defer selection in the later generations by advancing segregating populations through bulk pedigree or SSD methods with one or two inter-matings like recurrent selection. Based on pod characteristics and powdery mildew disease severity203 single plant progenies were isolated over the generations of three crosses along with bulk seed following SSD and bulk method to isolate transgressive segregants.


2017 ◽  
Vol 4 (04) ◽  
Author(s):  
ANURADHA PATEL ◽  
POONAM VERMA ◽  
SHARDA CHOUDHARY ◽  
ARVIND KUMAR VERMA

Fenugreek (Trigonella foenum-graecumL.) is an annual crop, mainly used as a spiceand leafy vegetable crop in many parts of the world. Classical breeding in fenugreek is restricted due to its low genetic variability and small flower size which hamper manual emasculation and pollination. Mutation breeding is an effective way to enrich genetic variability in crop plants. An experiment was conducted to determine the lethal dose of the physical mutagen gamma rays in fenugreek. The dry seeds of fenugreek were exposed to different doses of gamma rays i.e. 150Gy, 200Gy, 250Gy, 300Gy and 350Gy. These irradiated seeds were sown in the Petri plates with non-irradiated seeds (control). As the dose of gamma rays increased, there was a decrease in germination percentage, seedling survival, root length, shoot length and vigour index. Among five doses of gamma rays, the maximum seed germination was observed at lowest dose 150Gy (93%), followed by 200Gy (83%), 250Gy (76%), 300Gy (76%) and 350Gy (64%). The seedling survival was decreased from 90% (in control) to 56% in 350Gy dose of gamma rays. The gamma rays dose of 150Gy gave stimulatory effect on seedlings growth. The growth parameters were dose dependent, as the dose of gamma rays increased from 200Gy to 350Gy. The gamma rays dose of 350Gy showed 64% seeds germination and 56% of seedlings survival. Therefore, it is concluded that the LD50 dose for fenugreek is close to 350Gy. This information would be highly useful for initiating mutation breeding programme in fenugreek


2014 ◽  
Vol 95 (9) ◽  
pp. 1949-1955
Author(s):  
Ming-Hua Liang ◽  
Ying-Jie Liang ◽  
Xiao-Na Wu ◽  
Shi-Shui Zhou ◽  
Jian-Guo Jiang

Euphytica ◽  
2021 ◽  
Vol 217 (7) ◽  
Author(s):  
John E. Bradshaw

AbstractExperimental results are brought together to demonstrate that forage kale population improvement involving full-sib and selfed families can be done on an annual cycle, followed by production of a synthetic cultivar. Furthermore, this new breeding method compares favourably with the two successful methods used to date, namely triple-cross hybrid cultivars from inbreeding and crossbreeding programmes and open-pollinated cultivars from population improvement programmes. The key findings were that natural vernalization of kale in south east Scotland occurred by mid-December so that plants could be pollinated in a glasshouse with heating and lighting by the end of February and seed harvested by the end of May. The resulting full-sib or selfed families could be assessed in a field transplant trial in the same year, from June to November, thus completing an annual cycle. Self-pollination resulted in shorter plants with lower fresh-weight, dry-matter and digestible organic-matter yields, and undesirably higher contents of S-methylcysteine sulphoxide, the haemolytic anaemia factor, and the goitrogenic thiocyanate ion. As a consequence of digestible organic-matter yield being reduced by as much as 22%, the estimated optimum number of selfed parents in a synthetic cultivar was four to eight. Synthetic cultivars are expected to yield as well as triple-cross hybrids as there was no reduction in yield when the latter were open-pollinated.


Sign in / Sign up

Export Citation Format

Share Document