scholarly journals Diseases and Injuries of the Central Nervous System Leading to Sensory-Motor Impairment

Author(s):  
Dejan B. Popović ◽  
Thomas Sinkjaer
1996 ◽  
Vol 19 (1) ◽  
pp. 69-69
Author(s):  
A. Berardelli ◽  
R. Agostino ◽  
A. Currà ◽  
M. Manfredi

AbstractLatash & Anson's explanation of bradykinesia in patients with Parkinson's disease and cocontraction in dystonic patients is intriguing. However, the proposed adaptive changes in the central nervous system do not fit well with both clinical and experimental evidence of motor impairment in these patients. In particular, we question the explanation of: (1) the role of postural reactions and spatial accuracy in bradykinesia, (2) certain abnormalities during the execution of sequential and simultaneous movements, (3) the sudden changes in mobility (ON and OFF) of Parkinsonian patients, and (4) the meaning of reflex circuitry changes in dystonia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariana Acquarone ◽  
A. Poleto ◽  
A. F. Perozzo ◽  
P. F. R. Gonçalves ◽  
R. Panizzutti ◽  
...  

AbstractToxoplasma gondii is an opportunistic protozoan pathogen with a wide geographic distribution. The chronic phase of toxoplasmosis is often asymptomatic in humans and is characterized by tissue cysts throughout the central nervous system and muscle cells. T. gondii and other pathogens with tropism for the central nervous system are considered risk factors in the etiology of several neuropsychiatric disorders, such as schizophrenia and bipolar disorder, besides neurological diseases. Currently, it is known that cerebral toxoplasmosis increases dopamine levels in the brain and it is related to behavioral changes in animals and humans. Here we evaluate whether chronic T. gondii infection, using the cystogenic ME-49 strain, could induce behavioral alterations associated with neuropsychiatric disorders and glutamatergic neurotransmission dysfunction. We observed that the startle amplitude is reduced in the infected animals as well as glutamate and D-serine levels in prefrontal cortical and hippocampal tissue homogenates. Moreover, we did not detect alterations in social preference and spontaneous alternation despite severe motor impairment. Thus, we conclude that behavioral and cognitive aspects are maintained even though severe neural damage is observed by chronic infection of C57Bl/6 mice with the ME-49 strain.


2008 ◽  
Vol 18 (2) ◽  
pp. 11-23 ◽  
Author(s):  
Dejan Popovic ◽  
Thomas Sinkjær

The introductory tutorial to this special issue was written for readers with engineering background with the aim to provide the basis for comprehending better the natural motor control and the terminology used in description of impairments and disability caused by to CNS injuries and diseases. The tutorial aims to emphasize the differences between natural and artificial control, complexity of sensory-motor systems in humans, the high level of articulation redundancy, and the fact that all of the said systems are modified after the central nervous system lesion. We hope that the tutorial will simplify the following of the subsequent papers in this special issue dedicated to the use of electrical stimulation with surface electrodes for assisting motor functions.


1981 ◽  
Vol 25 (1) ◽  
pp. 566-570 ◽  
Author(s):  
A.T. Welford

A theory which accounts for both increase of accuracy and decrease of time taken for sensory-motor performance with practice is proposed within the general concept that signals from sense organs and in the central nervous system have to be detected against a background of random neural activity (“neural noise”).


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document