Atmospheric Plasma Treatment of Polymers for Biomedical Applications

Author(s):  
N. Gomathi ◽  
A. K. Chanda ◽  
S. Neogi
Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jure Žigon ◽  
Matjaž Pavlič ◽  
Pierre Kibleur ◽  
Jan Van den Bulcke ◽  
Marko Petrič ◽  
...  

AbstractPlasma treatment is becoming a mature technique for modification of surfaces of various materials, including wood. A better insight in the treatment process and the impact of the plasma on properties of wood bulk are still needed. The study was performed on Norway spruce and common beech wood, as well as their thermally modified variations. The formations of the airborne discharge, as well as mass changes of the treated wood, were monitored. The impact of such treatment on wood-coating interaction was investigated by evaluating the dynamic wettability and penetration into wood. At the wood surface, plasma streamers were observed more intense on denser latewood regions. Wood mass loss was higher with increasing number of passes through the plasma discharge and was lower for thermally modified wood than for unmodified wood. Plasma treatment increased the surface free energy of all wood species and lowered the contact angles of a waterborne coating, these together indicating enhanced wettability after treatment. Finally, the distribution and penetration depth of the coating were studied with X-ray microtomography. It was found that the coating penetrated deeper into beech than into spruce wood. However, the treatment with plasma increased the penetration of the coating only into spruce wood.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


Cellulose ◽  
2021 ◽  
Vol 28 (5) ◽  
pp. 3295-3295
Author(s):  
Jure Žigon ◽  
Janez Kovač ◽  
Rok Zaplotnik ◽  
Jaša Saražin ◽  
Milan Šernek ◽  
...  

2021 ◽  
Author(s):  
Chenchen Zhang ◽  
Jun Zhao ◽  
Yamei Gao ◽  
Jing Gao ◽  
Yongmei Lv

2021 ◽  
Vol 11 (6) ◽  
pp. 2534
Author(s):  
Henrike Rebl ◽  
Claudia Bergemann ◽  
Sebastian Rakers ◽  
Barbara Nebe ◽  
Alexander Rebl

The present study provides the fundamental results for the treatment of marine organisms with cold atmospheric pressure plasma. In farmed fish, skin lesions may occur as a result of intensive fish farming. Cold atmospheric plasma offers promising medical potential in wound healing processes. Since the underlying plasma-mediated mechanisms at the physical and cellular level are yet to be fully understood, we investigated the sensitivity of three fish cell lines to plasma treatment in comparison with mammalian cells. We varied (I) cell density, (II) culture medium, and (III) pyruvate concentration in the medium as experimental parameters. Depending on the experimental setup, the plasma treatment affected the viability of the different cell lines to varying degrees. We conclude that it is mandatory to use similar cell densities and an identical medium, or at least a medium with identical antioxidant capacity, when studying plasma effects on different cell lines. Altogether, fish cells showed a higher sensitivity towards plasma treatment than mammalian cells in most of our setups. These results should increase the understanding of the future treatment of fish.


2018 ◽  
Vol 136 (9) ◽  
pp. 47131 ◽  
Author(s):  
Lutfiye Altay ◽  
Ebru Bozaci ◽  
Metehan Atagur ◽  
Kutlay Sever ◽  
Gozde Sevig Tantug ◽  
...  

2013 ◽  
Vol 10 (6) ◽  
pp. 506-516 ◽  
Author(s):  
Ricardo Molina ◽  
Cristina Ligero ◽  
Petar Jovančić ◽  
Enric Bertran

2014 ◽  
Vol 34 (4) ◽  
pp. 941-946 ◽  
Author(s):  
RAFAEL GUERRERO-PRESTON ◽  
TAKENORI OGAWA ◽  
MAMORU UEMURA ◽  
GARY SHUMULINSKY ◽  
BLANCA L. VALLE ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document