River Ecology and Urban Pollution

2018 ◽  
pp. 173-186
Author(s):  
Martin Fenn
Author(s):  
Gilbert Estrada

The inclusive ideals of George Sánchez have helped shape a new generation of academics who have promoted connections with nonacademic organizations. This article discusses how Sánchez has continued these efforts through his pivotal contributions to an award-winning documentary focusing on the multiethnic, working-class community of Boyle Heights: Betsy Kalin’s film East LA Interchange (2015). East LA Interchange’s greatest contribution to the generative scholarship Sánchez emphasizes is its critical analysis of modern urban problems, utilizing history as a tool for social change. The story of Boyle Heights is not just a history of a single working-class community with a diverse culture. It is also a tale of a neighborhood trying to solve real world problems such as gentrification, unaffordable housing, community displacement, and urban pollution. The film portrays these difficulties in the present while showing that they originated decades ago. Sánchez and East LA Interchange are at their best when they provide the historical contexts of contemporary problems, emphasizing that history is not only the study of the past. Rather, history is the unending dialogue between the past, present, and future, and any significant discourse on today’s urban ills must be rooted in the past. For students and others interested in the diverse communities common in many US metropolitan regions, East LA Interchange has much to offer regarding the issues of immigration, redlining, deed restrictions, political activism, freeway construction, living with racially and ethnically diverse community members, and the nationwide problem of gentrification. These themes, especially gentrification, are the primary focus of this article.


Author(s):  
Taylor Osborne ◽  
◽  
Matthew Dietrich ◽  
Justin Huling ◽  
Kaitlyn McIntosh ◽  
...  

Author(s):  
Martin Richardson ◽  
Mikhail Soloviev

Human activities have been affecting rivers and other natural systems for millennia. Anthropogenic changes to rivers over the last few centuries led to the accelerating state of decline of coastal and estuarine regions globally. Urban rivers are parts of larger catchment ecosystems, which in turn form parts of wider nested, interconnected systems. Accurate modelling of urban rivers may not be possible because of the complex multisystem interactions operating concurrently and over different spatial and temporal scales. This paper overviews urban river syndrome, the accelerating deterioration of urban river ecology, and outlines growing conservation challenges of river restoration projects. This paper also reviews the river Thames, which is a typical urban river that suffers from growing anthropogenic effects and thus represents all urban rivers of similar type. A particular emphasis is made on ecosystem adaptation, widespread extinctions and the proliferation of non-native species in the urban Thames. This research emphasizes the need for a holistic systems approach to urban river restoration.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 661
Author(s):  
Zhiwei Ying ◽  
Xinwei Chen ◽  
He Li ◽  
Xinqi Liu ◽  
Chi Zhang ◽  
...  

Soybean dreg is a by-product of soybean products production, with a large consumption in China. Low utilization value leads to random discarding, which is one of the important sources of urban pollution. In this work, porous biochar was synthesized using a one-pot method and potassium bicarbonate (KHCO3) with low-cost soybean dreg (SD) powder as the carbon precursor to investigating the adsorption of methylene blue (MB). The prepared samples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analyzer (EA), Brunauer-Emmett-Teller (BET), X-ray diffractometer (XRD), Raman spectroscopy (Raman), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The obtained SDB-K-3 showed a high specific surface area of 1620 m2 g−1, a large pore volume of 0.7509 cm3 g−1, and an average pore diameter of 1.859 nm. The results indicated that the maximum adsorption capacity of SDB-K-3 to MB could reach 1273.51 mg g−1 at 318 K. The kinetic data were most consistent with the pseudo-second-order model and the adsorption behavior was more suitable for the Langmuir isotherm equation. This study demonstrated that the porous biochar adsorbent can be prepared from soybean dreg by high value utilization, and it could hold significant potential for dye wastewater treatment in the future.


Author(s):  
Atsler Luana Lehun ◽  
Amanda Brixner Mendes ◽  
Ricardo Massato Takemoto ◽  
Ana Carolina de Deus Bueno Krawczyk

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1310
Author(s):  
Pablo Torres ◽  
Soledad Le Clainche ◽  
Ricardo Vinuesa

Understanding the flow in urban environments is an increasingly relevant problem due to its significant impact on air quality and thermal effects in cities worldwide. In this review we provide an overview of efforts based on experiments and simulations to gain insight into this complex physical phenomenon. We highlight the relevance of coherent structures in urban flows, which are responsible for the pollutant-dispersion and thermal fields in the city. We also suggest a more widespread use of data-driven methods to characterize flow structures as a way to further understand the dynamics of urban flows, with the aim of tackling the important sustainability challenges associated with them. Artificial intelligence and urban flows should be combined into a new research line, where classical data-driven tools and machine-learning algorithms can shed light on the physical mechanisms associated with urban pollution.


2021 ◽  
Vol 55 (8) ◽  
pp. 4357-4367
Author(s):  
Bin Zhao ◽  
Jerome D. Fast ◽  
Neil M. Donahue ◽  
Manish Shrivastava ◽  
Meredith Schervish ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rasa Zalakeviciute ◽  
Katiuska Alexandrino ◽  
Yves Rybarczyk ◽  
Alexis Debut ◽  
Karla Vizuete ◽  
...  

Abstract Particulate matter (PM) is one of the key pollutants causing health risks worldwide. While the preoccupation for increased concentrations of these particles mainly depends on their sources and thus chemical composition, some regions are yet not well investigated. In this work the composition of chemical elements of atmospheric PM10 (particles with aerodynamic diameters ≤ 10 µm), collected at the urban and suburban sites in high elevation tropical city, were chemically analysed during the dry and wet seasons of 2017–2018. A large fraction (~ 68%) of PM10 composition in Quito, Ecuador is accounted for by water-soluble ions and 16 elements analysed using UV/VIS spectrophotometer and Inductively Coupled Plasma—Optical Emission Spectroscopy (ICP-OES). Hierarchical clustering analysis was performed to study a correlation between the chemical composition of urban pollution and meteorological parameters. The suburban area displays an increase in PM10 concentrations and natural elemental markers during the dry (increased wind intensity, resuspension of soil dust) season. Meanwhile, densely urbanized area shows increased total PM10 concentrations and anthropogenic elemental markers during the wet season, which may point to the worsened combustion and traffic conditions. This might indicate the prevalence of cardiovascular and respiratory problems in motorized areas of the cities in the developing world.


Sign in / Sign up

Export Citation Format

Share Document