Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density

2017 ◽  
Vol 27 (15) ◽  
pp. 1605745 ◽  
Author(s):  
Jee Y. Hwang ◽  
Mengping Li ◽  
Maher F. El-Kady ◽  
Richard B. Kaner
Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1731
Author(s):  
Chih-Chung Lai ◽  
Feng-Hao Hsu ◽  
Su-Yang Hsu ◽  
Ming-Jay Deng ◽  
Kueih-Tzu Lu ◽  
...  

The specific energy of an aqueous carbon supercapacitor is generally small, resulting mainly from a narrow potential window of aqueous electrolytes. Here, we introduced agarose, an ecologically compatible polymer, as a novel binder to fabricate an activated carbon supercapacitor, enabling a wider potential window attributed to a high overpotential of the hydrogen-evolution reaction (HER) of agarose-bound activated carbons in sulfuric acid. Assembled symmetric aqueous cells can be galvanostatically cycled up to 1.8 V, attaining an enhanced energy density of 13.5 W h/kg (9.5 µW h/cm2) at 450 W/kg (315 µW/cm2). Furthermore, a great cycling behavior was obtained, with a 94.2% retention of capacitance after 10,000 cycles at 2 A/g. This work might guide the design of an alternative material for high-energy aqueous supercapacitors.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Author(s):  
Mingrui Liu ◽  
Jing Li ◽  
Bing Chi ◽  
Long Zheng ◽  
Yuexing Zhang ◽  
...  

The Li-O2 battery is recognized as one of the most promising energy storage devices for next-generation automotive batteries due to its extremely high theoretical energy density. The design and preparation...


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Gopal Krishna Gupta ◽  
Pinky Sagar ◽  
Sumit Kumar Pandey ◽  
Monika Srivastava ◽  
A. K. Singh ◽  
...  

AbstractHerein, we demonstrate the fabrication of highly capacitive activated carbon (AC) using a bio-waste Kusha grass (Desmostachya bipinnata), by employing a chemical process followed by activation through KOH. The as-synthesized few-layered activated carbon has been confirmed through X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy techniques. The chemical environment of the as-prepared sample has been accessed through FTIR and UV–visible spectroscopy. The surface area and porosity of the as-synthesized material have been accessed through the Brunauer–Emmett–Teller method. All the electrochemical measurements have been performed through cyclic voltammetry and galvanometric charging/discharging (GCD) method, but primarily, we focus on GCD due to the accuracy of the technique. Moreover, the as-synthesized AC material shows a maximum specific capacitance as 218 F g−1 in the potential window ranging from − 0.35 to + 0.45 V. Also, the AC exhibits an excellent energy density of ~ 19.3 Wh kg−1 and power density of ~ 277.92 W kg−1, respectively, in the same operating potential window. It has also shown very good capacitance retention capability even after 5000th cycles. The fabricated supercapacitor shows a good energy density and power density, respectively, and good retention in capacitance at remarkably higher charging/discharging rates with excellent cycling stability. Henceforth, bio-waste Kusha grass-derived activated carbon (DP-AC) shows good promise and can be applied in supercapacitor applications due to its outstanding electrochemical properties. Herein, we envision that our results illustrate a simple and innovative approach to synthesize a bio-waste Kusha grass-derived activated carbon (DP-AC) as an emerging supercapacitor electrode material and widen its practical application in electrochemical energy storage fields.


Author(s):  
Xiaohui Zhao ◽  
Chonglong Wang ◽  
Ziwei Li ◽  
Xuechun Hu ◽  
Amir A. Razzaq ◽  
...  

The lithium sulfur (Li-S) batteries have a high theoretical specific capacity (1675 mAh g-1) and energy density (2600 Wh kg-1), exerting a high perspective as the next-generation rechargeable batteries for...


2021 ◽  
Vol 19 (1) ◽  
pp. 432-441
Author(s):  
Pawel Jeżowski ◽  
Olivier Crosnier ◽  
Thierry Brousse

Abstract Energy storage is an integral part of the modern world. One of the newest and most interesting concepts is the internal hybridization achieved in metal-ion capacitors. In this study, for the first time we used sodium borohydride (NaBH4) as a sacrificial material for the preparation of next-generation sodium-ion capacitors (NICs). NaBH4 is a material with large irreversible capacity of ca. 700 mA h g−1 at very low extraction potential close to 2.4 vs Na+/Na0. An assembled NIC cell with the composite-positive electrode (activated carbon/NaBH4) and hard carbon as the negative one operates in the voltage range from 2.2 to 3.8 V for 5,000 cycles and retains 92% of its initial capacitance. The presented NIC has good efficiency >98% and energy density of ca. 18 W h kg−1 at power 2 kW kg−1 which is more than the energy (7 W h kg−1 at 2 kW kg−1) of an electrical double-layer capacitor (EDLC) operating at voltage 2.7 V with the equivalent components as in NIC. Tin phosphide (Sn4P3) as a negative electrode allowed the reaching of higher values of the specific energy density 33 W h kg−1 (ca. four times higher than EDLC) at the power density of 2 kW kg−1, with only 1% of capacity loss upon 5,000 cycles and efficiency >99%.


Author(s):  
Longtao Ren ◽  
Qian Wang ◽  
Yajie Li ◽  
Cejun Hu ◽  
Yajun Zhao ◽  
...  

Rechargeable lithium-sulfur (Li–S) batteries are considered one of the most promising next-generation energy storage devices because of their high theoretical energy density. However, the dissolution of lithium polysulfides (LiPSs) in...


2018 ◽  
Vol 6 (21) ◽  
pp. 9846-9853 ◽  
Author(s):  
Ranjith Thangavel ◽  
Aravindaraj G. Kannan ◽  
Rubha Ponraj ◽  
Xueliang Sun ◽  
Dong-Won Kim ◽  
...  

Developing sodium based energy storage systems that retain high energy density at high power along with stable cycling is of paramount importance to meet the energy demands of next generation applications.


2020 ◽  
Vol 362 ◽  
pp. 137152
Author(s):  
Obinna Egwu Eleri ◽  
Kingsley Ugochukwu Azuatalam ◽  
Mona Wetrhus Minde ◽  
Ana Maria Trindade ◽  
Navaneethan Muthuswamy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document