Metal Oxide Particles: Multi Ball-In-Ball Hybrid Metal Oxides (Adv. Mater. 15/2011)

2011 ◽  
Vol 23 (15) ◽  
pp. 1687-1687 ◽  
Author(s):  
Won Cho ◽  
Yun Hee Lee ◽  
Hee Jung Lee ◽  
Moonhyun Oh
2020 ◽  
Vol 69 (7-8) ◽  
pp. 365-370
Author(s):  
Yuriy Melnyk ◽  
Roman Starchevskyi ◽  
Stepan Melnyk

Transesterification of vegetable oil with ethanol in the presence of fine metal oxide particles as catalysts has been investigated. Zinc and nickel(II) oxides were shown to have the highest catalytic activity. In their presence, the conversion of sunflower oil triglycerides, after 150 min, reached 95.3 and 94.2 %, respectively. The optimal mass fraction of zinc oxide catalyst was found to be 0.25–0.31 %. In the presence of zinc oxide, with mass fraction of water in ethanol of 5 and 10 %, the conversion of triglycerides was 98.5 and 94.8 %, respectively.


1995 ◽  
Vol 10 (5) ◽  
pp. 1327-1336 ◽  
Author(s):  
Chin-Lin Huang ◽  
Egon Matijevic

Five kinds of uniform metal oxide particles (α-Fe2O3, CeO2, CuO, NiO, and SiO2) were coated with polypyrrole by reacting the dispersed solids with pyrrole in a water/ethanol medium without the use of a soluble oxidant. When the process was carried out in air, all particles were coated with the polymer, although the thickness of the layer varied on different cores. In CuO dispersions, independent polypyrrole particles were produced in addition to coated spheres. While oxygen is the major oxidant that initiates the polymerization of pyrrole, some metal oxides may also affect the reaction both in terms of the amount and the composition of the shell. Thus, α-Fe2O3 and SiO2 were found to be inactive in the polymerization, while CeCh and CuO react with the adsorbed pyrrole molecules through a reductive-dissolution process, in which the monomers are oxidized, causing a release of reduced metal ions.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1232 ◽  
Author(s):  
Nicole Carina Preisner ◽  
Marc Linder

High-temperature thermal energy storage enables concentrated solar power plants to provide base load. Thermochemical energy storage is based on reversible gas–solid reactions and brings along the advantage of potential loss-free energy storage in the form of separated reaction products and possible high energy densities. The redox reaction of metal oxides is able to store thermal energy at elevated temperatures with air providing the gaseous reaction partner. However, due to the high temperature level, it is crucial to extract both the inherent sensible and thermochemical energies of the metal-oxide particles for enhanced system efficiency. So far, experimental research in the field of thermochemical energy storage focused mainly on solar receivers for continuously charging metal oxides. A continuously operated system of energy storage and solar tower decouples the storage capacity from generated power with metal-oxide particles applied as heat transfer medium and energy storage material. Hence, a heat exchanger based on a countercurrent moving bed concept was developed in a kW -scale. The reactor addresses the combined utilization of the reaction enthalpy of the oxidation and the extraction of thermal energy of a manganese–iron-oxide particle flow. A stationary temperature profile of the bulk was achieved with two distinct temperature sections. The oxidation induced a nearly isothermal section with an overall stable off-gas temperature. The oxidation and heat extraction from the manganese–iron oxide resulted in a total energy density of 569 kJ/kg with a thermochemical share of 21.1%.


Author(s):  
Priya Gupta ◽  
Savita Maurya ◽  
Narendra Kumar Pandey ◽  
Vernica Verma

: This review paper encompasses a study of metal-oxide and their composite based gas sensors used for the detection of ammonia (NH3) gas. Metal-oxide has come into view as an encouraging choice in the gas sensor industry. This review paper focuses on the ammonia sensing principle of the metal oxides. It also includes various approaches adopted for increasing the gas sensitivity of metal-oxide sensors. Increasing the sensitivity of the ammonia gas sensor includes size effects and doping by metal or other metal oxides which will change the microstructure and morphology of the metal oxides. Different parameters that affect the performances like sensitivity, stability, and selectivity of gas sensors are discussed in this paper. Performances of the most operated metal oxides with strengths and limitations in ammonia gas sensing application are reviewed. The challenges for the development of high sensitive and selective ammonia gas sensor are also discussed.


Catalysts ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 362
Author(s):  
Yabibal Getahun Dessie ◽  
Qi Hong ◽  
Bachirou Guene Lougou ◽  
Juqi Zhang ◽  
Boshu Jiang ◽  
...  

Metal oxide materials are known for their ability to store thermochemical energy through reversible redox reactions. Metal oxides provide a new category of materials with exceptional performance in terms of thermochemical energy storage, reaction stability and oxygen-exchange and uptake capabilities. However, these characteristics are predicated on the right combination of the metal oxide candidates. In this study, metal oxide materials consisting of pure oxides, like cobalt(II) oxide, manganese(II) oxide, and iron(II, III) oxide (Fe3O4), and mixed oxides, such as (100 wt.% CoO, 100 wt.% Fe3O4, 100 wt.% CoO, 25 wt.% MnO + 75 wt.% CoO, 75 wt.% MnO + 25 wt.% CoO) and 50 wt.% MnO + 50.wt.% CoO), which was subjected to a two-cycle redox reaction, was proposed. The various mixtures of metal oxide catalysts proposed were investigated through the thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), energy dispersive X-ray (EDS), and scanning electron microscopy (SEM) analyses. The effect of argon (Ar) and oxygen (O2) at different gas flow rates (20, 30, and 50 mL/min) and temperature at thermal charging step and thermal discharging step (30–1400 °C) during the redox reaction were investigated. It was revealed that on the overall, 50 wt.% MnO + 50 wt.% CoO oxide had the most stable thermal stability and oxygen exchange to uptake ratio (0.83 and 0.99 at first and second redox reaction cycles, respectively). In addition, 30 mL/min Ar–20 mL/min O2 gas flow rate further increased the proposed (Fe,Co,Mn)Ox mixed oxide catalyst’s cyclic stability and oxygen uptake ratio. SEM revealed that the proposed (Fe,Co,Mn)Ox material had a smooth surface and consisted of polygonal-shaped structures. Thus, the proposed metallic oxide material can effectively be utilized for high-density thermochemical energy storage purposes. This study is of relevance to the power engineering industry and academia.


2021 ◽  
Vol 20 (2) ◽  
pp. 142-149
Author(s):  
Avnish Kumar Arora ◽  
Pankaj Kumar

AbstractStudies on the interaction of biomolecules with inorganic compounds, mainly mineral surfaces, are of great concern in identifying their role in chemical evolution and origins of life. Metal oxides are the major constituents of earth and earth-like planets. Hence, studies on the interaction of biomolecules with these minerals are the point of concern for the study of the emergence of life on different planets. Zirconium oxide is one of the metal oxides present in earth's crust as it is a part of several types of rocks found in sandy areas such as beaches and riverbeds, e.g. pebbles of baddeleyite. Different metal oxides have been studied for their role in chemical evolution but no studies have been reported about the role of zirconium oxide in chemical evolution and origins of life. Therefore, studies were carried out on the interaction of ribonucleic acid constituents, 5′-CMP (cytidine monophosphate), 5′-UMP (uridine monophosphate), 5′-GMP (guanosine monophosphate) and 5′-AMP (adenosine monophosphate), with zirconium oxide. Synthesized zirconium oxide particles were characterized by using vibrating sample magnetometer, X-Ray Diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy. Zirconia particles were in the nanometre range, from 14 to 27 nm. The interaction of zirconium oxide with ribonucleic acid constituents was performed in the concentration range of 5 × 10−5–300 × 10−5 M. Interaction studies were carried out in three mediums; acidic (pH 4.0), neutral (pH 7.0) and basic (pH 9.0). At neutral pH, maximum interaction was observed. The interaction of zirconium oxide with 5′-UMP was 49.45% and with 5′-CMP 67.98%, while with others it was in between. Interaction studies were Langmurian in nature. Xm and KL values were calculated. Infrared spectral studies of ribonucleotides, metal oxide and ribonucleotide–metal oxide adducts were carried out to find out the interactive sites. It was observed that the nitrogen base and phosphate moiety of ribonucleotides interact with the positive charge surface of metal oxide. SEM was also carried out to study the adsorption. The results of the present study favour the important role of zirconium oxide in concentrating the organic molecules from their dilute aqueous solutions in primeval seas.


ChemInform ◽  
2010 ◽  
Vol 25 (30) ◽  
pp. no-no
Author(s):  
M. S. EL-SHALL ◽  
W. SLACK ◽  
W. VANN ◽  
D. KANE ◽  
D. HANLEY

Sign in / Sign up

Export Citation Format

Share Document