scholarly journals Optimizing the Electrical Energy Conversion Cycle of Dielectric Elastomer Generators

2014 ◽  
Vol 26 (38) ◽  
pp. 6617-6621 ◽  
Author(s):  
Samuel Shian ◽  
Jiangshui Huang ◽  
Shijie Zhu ◽  
David R. Clarke
2019 ◽  
Vol 804 ◽  
pp. 63-67
Author(s):  
Heng Tong Cheng ◽  
Zhen Qiang Song ◽  
Shijie Zhu ◽  
Kazuhiro Ohyama

Dielectric elastomer generators (DEGs) are based on the electromechanical response of the dielectric elastomer film sandwiched between the compliant electrodes on each side, which are capable of converting mechanical energy from diverse sources (e.g, ocean wave) into electrical energy. In essence, DEG is a voltage up-converter using mechanical energy to increase the electrical energy of the charge on a soft capacitor. We evaluated the effect of input voltage and the pre-stretch ratios on energy conversion efficiency of DEG. With a power supply of 2.2kV and pre-stretch ratio of 2, the maximum net electrical energy density and energy conversion efficiency in a single harvesting cycle were measured to be 413 J/kg and 15.8%, respectively. The experimental results showed that, with the higher input voltage and the larger stretch ratio range, higher the energy conversion performance of DEG can be achieved.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1141
Author(s):  
Ángel Encalada-Dávila ◽  
Mayken Espinoza-Andaluz ◽  
Julio Barzola-Monteses ◽  
Shian Li ◽  
Martin Andersson

A polymer electrolyte fuel cell (PEFC) is an electrochemical device that converts chemical energy into electrical energy and heat. The energy conversion is simple; however, the multiphysics phenomena involved in the energy conversion process must be analyzed in detail. The gas diffusion layer (GDL) provides a diffusion media for reactant gases and gives mechanical support to the fuel cell. It is a complex medium whose properties impact the fuel cell’s efficiency. Therefore, an in-depth analysis is required to improve its mechanical and physical properties. In the current study, several transport phenomena through three-dimensional digitally created GDLs have been analyzed. Once the porous microstructure is generated and the transport phenomena are mimicked, transport parameters related to the fluid flow and mass diffusion are computed. The GDLs are approximated to the carbon paper represented as a grouped package of carbon fibers. Several correlations, based on the fiber diameter, to predict their transport properties are proposed. The digitally created GDLs and the transport phenomena have been modeled using the open-source library named Open Pore Network Modeling (OpenPNM). The proposed correlations show a good fit with the obtained data with an R-square of approximately 0.98.


2012 ◽  
Vol 16 (suppl. 1) ◽  
pp. 159-171 ◽  
Author(s):  
Zoltan Corba ◽  
Vladimir Katic ◽  
Boris Dumnic ◽  
Dragan Milicevic

In this study, a simulation model of in-grid solar-to-electrical energy conversion system is presented. In this case, the in-grid solar-to-electrical energy conversion system is small photovoltaic power plant, which was constructed by the Center for Renewable Energy and Power Quality from Faculty of Technical Sciences (FTS). Equivalent circuit diagram of photovoltaic cell is described which was used to develop the simulation model of modules. Possible types and topologies of inverters are also described. The photovoltaic power plant is described briefly, because it is necessary to understand the simulation model. The result of simulation is an electricity annual production by the power plant. These results were compared with the real values, while its get a good overlap. The paper also presents the modern modeling methods developed at Faculty of Technical Sciences in the Laboratory for RES systems.


2002 ◽  
Vol 124 (5) ◽  
pp. 954-962 ◽  
Author(s):  
T. S. Fisher ◽  
D. G. Walker

This paper considers the theory of electron field emission from nanoscale emitters with particular focus on thermal and electrical energy transport. The foundational theory of field emission is explored, and a model is presented that accounts explicitly for the energy band curvature produced by nanoscale tip emitters. The results indicate that the inclusion of band curvature strongly influences the energetic distribution of electrons for emitter radii less than 50 nm. The energy exchange process between emitted and replacement electrons is shown to allow high local energy transfer rates that can be exploited in direct thermal-to-electrical energy conversion processes. The dependence of energy conversion rates on material and operational parameters is demonstrated. Throughout the paper, opportunities for further research involving nanoscale heat transfer, materials development, and modeling are highlighted.


2018 ◽  
Vol 192 ◽  
pp. 01032
Author(s):  
Zhen-Qiang Song ◽  
Sriyuttakrai Sathin ◽  
Wei Li ◽  
Kazuhiro Ohyama ◽  
ShiJie Zhu

The dielectric elastomer generator (VHB 4905, 3M) with diaphragm configuration was investigated with the constant-voltage harvesting scheme in order to investigate its energy harvesting ability. The maximum energy density and energy conversion efficiency is measured to be 65 J/kg and 5.7%, respectively. The relatively low efficiency indicates that higher energy conversion efficiency is impeded by the viscosity of the acrylic elastomer, suggesting that higher conversion efficiency with new low-viscosity elastomer should be available.


2018 ◽  
Vol 2 (12) ◽  
pp. 2717-2726 ◽  
Author(s):  
Mark A. Buckingham ◽  
Frank Marken ◽  
Leigh Aldous

The multi-faceted significance of the anion upon the thermoelectrochemistry of the iron(ii/iii) redox couple has been extensively explored.


Sign in / Sign up

Export Citation Format

Share Document