scholarly journals Supersonic Cold Spraying for Energy and Environmental Applications: One‐Step Scalable Coating Technology for Advanced Micro‐ and Nanotextured Materials

2019 ◽  
Vol 32 (2) ◽  
pp. 1905028 ◽  
Author(s):  
Seongpil An ◽  
Bhavana Joshi ◽  
Alexander L. Yarin ◽  
Mark T. Swihart ◽  
Sam S. Yoon
Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 716
Author(s):  
Masaya Shimabukuro

Titanium (Ti) and its alloys are commonly used in medical devices. However, biomaterial-associated infections such as peri-implantitis and prosthetic joint infections are devastating and threatening complications for patients, dentists, and orthopedists and are easily developed on titanium surfaces. Therefore, this review focuses on the formation of biofilms on implant surfaces, which is the main cause of infections, and one-step micro-arc oxidation (MAO) as a coating technology that can be expected to prevent infections due to the implant. Many researchers have provided sufficient data to prove the efficacy of MAO for preventing the initial stages of biofilm formation on implant surfaces. Silver (Ag), copper (Cu), and zinc (Zn) are well used and are incorporated into the Ti surface by MAO. In this review, the antibacterial properties, cytotoxicity, and durability of these elements on the Ti surface incorporated by one-step MAO will be summarized. This review is aimed at enhancing the importance of the quantitative control of Ag, Cu, and Zn for their use in implant surfaces and the significance of the biodegradation behavior of these elements for the development of antibacterial properties.


2018 ◽  
Vol 347 ◽  
pp. 432-439 ◽  
Author(s):  
Wenjie Tian ◽  
Huayang Zhang ◽  
Hongqi Sun ◽  
Moses O. Tadé ◽  
Shaobin Wang

2008 ◽  
Vol 1151 ◽  
Author(s):  
Yu Zou ◽  
Ahmad Rezaeian ◽  
Jerzy Szpunar ◽  
Eric Irissou ◽  
Stephen Yue

ABSTRACTCold spray is a relatively new coating technology in which coatings can be produced by powdered particles under large plastic deformation without significant heating. In this paper, nickel coatings were fabricated by cold spray process followed by heat treatment in inert gas. Structural transformation of both as-sprayed and annealed coatings was investigated by Electron Backscattering Diffraction (EBSD) in a FEG-SEM. The results show that after cold spraying sub-micron grains and subgrains with high crystal strain appear in the particle bond interface, but not shown in the center of particles. Microstructure was transformed to be uniform and stresses were released after annealing in 400°C for one hour. And ductility and formability were significantly improved due to recovery and recrystallization. Continuous recrystallization after large strain deformation could occur after cold spraying followed by annealing.


2020 ◽  
Vol 69 (5) ◽  
pp. 476-484
Author(s):  
Vinicius H Bonattini ◽  
Lucas AL Paula ◽  
Natana AM Jesus ◽  
Denise C Tavares ◽  
Heloiza D Nicolella ◽  
...  

2016 ◽  
Vol 42 (13) ◽  
pp. 14384-14390 ◽  
Author(s):  
Jing Yuan ◽  
Kunfeng Zhao ◽  
Ting Cai ◽  
Zhenyuan Gao ◽  
Ling Yang ◽  
...  

2020 ◽  
pp. 30-42
Author(s):  
Wenjie Hu ◽  
Sergii Markovych ◽  
Kun Tan ◽  
Oleksandr Shorinov ◽  
Tingting Cao

Titanium alloys have the advantages of high specific strength, good corrosion resistance, high heat resistance, and low density, which is the main structural material of aerospace system components, including compressor blade, cartridge receiver, blisk, engine nacelle, thermal baffle and so on. At present, about three-quarters of titanium and titanium alloys in the world are used in the aerospace industry, including A350 for 14%, F18 for 15 %, B787 for 15 %, SU-57 for 18 %, J-20 for 20 %, FC-31 fighters for 25 %, F35 for about 27 %, and F22 up to 41 %, etc, so it has the reputation of "space metal". However, its low wear resistance limits the further development of titanium alloy. Besides, its high manufacturing cost, if only require the occasion of surface performance can reduce the use of the substrate, and then reduced the cost. Therefore, the study of aircraft titanium alloy is of great significance, the protection of titanium alloy includes alloying technology and coating technology. Alloying technology mainly adds other elements on its basis to improve the performance, while the most popular method is coating technology, the present, there are many coating technologies, include high-velocity oxy-fuel (HVOF), HVAF, cold spraying, laser cladding, laser micro-fusion in-situ synthesized technology, micro-arc oxidation, laser melt injection (LMI), supersonic laser deposition (SLD) and supersonic plasma spray technology, surface repair titanium alloy parts by cold spraying technology are good ways to solve those problems. Because of its low process temperature, no oxidation, only plastic deformation, and repair efficiency are high, the protective coating has high bonding strength and good impact toughness. In this paper, the types and applications of aircraft titanium alloys were reviewed, the latest research results of surface repair of titanium alloys parts by cold spraying technology were reviewed, technological parameters of the cold gas dynamic spraying technology was analyzed, including powder size of particles, morphologies, critical velocity, particle compression rate, substrate preheating effects on the particle/substrate adhesion, etc.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


2010 ◽  
Vol 43 (18) ◽  
pp. 16
Author(s):  
MATTHEW R.G. TAYLOR
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document