scholarly journals SURFACE REPAIR OF AIRCRAFT TITANIUM ALLOY PARTS BY COLD SPRAYING TECHNOLOGY

2020 ◽  
pp. 30-42
Author(s):  
Wenjie Hu ◽  
Sergii Markovych ◽  
Kun Tan ◽  
Oleksandr Shorinov ◽  
Tingting Cao

Titanium alloys have the advantages of high specific strength, good corrosion resistance, high heat resistance, and low density, which is the main structural material of aerospace system components, including compressor blade, cartridge receiver, blisk, engine nacelle, thermal baffle and so on. At present, about three-quarters of titanium and titanium alloys in the world are used in the aerospace industry, including A350 for 14%, F18 for 15 %, B787 for 15 %, SU-57 for 18 %, J-20 for 20 %, FC-31 fighters for 25 %, F35 for about 27 %, and F22 up to 41 %, etc, so it has the reputation of "space metal". However, its low wear resistance limits the further development of titanium alloy. Besides, its high manufacturing cost, if only require the occasion of surface performance can reduce the use of the substrate, and then reduced the cost. Therefore, the study of aircraft titanium alloy is of great significance, the protection of titanium alloy includes alloying technology and coating technology. Alloying technology mainly adds other elements on its basis to improve the performance, while the most popular method is coating technology, the present, there are many coating technologies, include high-velocity oxy-fuel (HVOF), HVAF, cold spraying, laser cladding, laser micro-fusion in-situ synthesized technology, micro-arc oxidation, laser melt injection (LMI), supersonic laser deposition (SLD) and supersonic plasma spray technology, surface repair titanium alloy parts by cold spraying technology are good ways to solve those problems. Because of its low process temperature, no oxidation, only plastic deformation, and repair efficiency are high, the protective coating has high bonding strength and good impact toughness. In this paper, the types and applications of aircraft titanium alloys were reviewed, the latest research results of surface repair of titanium alloys parts by cold spraying technology were reviewed, technological parameters of the cold gas dynamic spraying technology was analyzed, including powder size of particles, morphologies, critical velocity, particle compression rate, substrate preheating effects on the particle/substrate adhesion, etc.

Author(s):  
Xiaolan Han ◽  
Zhanfeng Liu

Abstract Titanium alloy is a typical hard-to-machine material, and has a relatively expensive material price. For deep-hole tubes made of titanium alloys, the material utilization rate of direct deep-hole drilling is relatively low, especially for large diameter holes. Deep-hole trepanning provides an effective method that reduces manufacturing cost and improves the material utilization which is used on larger diameter bars. In this paper, deep-hole trepanning tests are carried out on the TC10 titanium alloys to resolve the key technical problems. The thrust force and torque, tool wear, and chip morphology are analyzed based on the different process parameters. The results show that appropriate process parameters can remove the chips easily and reduce the thrust force and tool wear. The titanium alloy deep-hole trepanning has a good drilling effect and solves the problem of drilling deep, large diameter holes in titanium alloy tubes, which has practical significance for reducing production cost and improving material utilization.


2020 ◽  
pp. 61-71
Author(s):  
Wenjie Hu ◽  
Sergii Markovych ◽  
Kun Tan ◽  
Oleksandr Shorinov ◽  
Tingting Cao

Titanium alloys are the main structural material of aerospace system component, about 75 % of titanium and titanium alloys are used in the aerospace industry, which have the advantages of low density, high specific strength and excellent corrosion resistance, However, its low wear resistance limits the further application of titanium alloy. Therefore, it is of great significance to the surface protection of titanium alloy. Surface coating technology can solve the problems of titanium alloy wear. Currently, there are many coating technologies to solve the problems of wear and corrosion, including the cold spraying(CS), high velocity oxy-fuel(HVOF), the thermo-chemical treatment, the gas phase deposition, the laser melted; the plasma spray coating, the double-plasma surface alloying technology, arc spray, etc, However, when thermal spraying is used to prepare anti-titanium fire coating, the tip of the blade is prone to overheating, thus affecting the performance of the blade. But cold spraying technology is due to the preparation of titanium alloy protective coating in solid state, and the coating has high bonding strength and good impact toughness, furthermore, it can deposit almost any powder materials, such as pure metals, including aluminum(Al), magnesium(Mg), titanium(Ti), nickel(Ni), cobalt(Co),niobium(Nb), tantalum(Ta), Copper(Cu), tungsten(W), etc; nonmetal such as ceramic, etc; Metallic alloys; composite coating, including Al-Zn, Ti-Al, Ni-Al, Al-Mg, Al-SiC, Al-Al2O3, Ti-Ti6Al4V-Al2O3, Ni-Zn, Ni-cBN, Ni-Zn-Al2O3, Ti-Ta, Al-Mg17Al12, Al-FeSiBNbCu, WC-Co, Cr3C2-NiCr, etc. It can also directly sprayed mixed powder to produce wear resistant coatings, hence, it is widely used. At present, cold-sprayed titanium alloy materials are mainly used in the field of substrate protection and repair, and the field of cold-sprayed titanium alloy additive manufacturing that has appeared in recent years is still in the stage of process and basic theoretical exploration. In order to better understand the latest status of cold spray coating of titanium alloy, in this paper, the wear resistance coating on aircraft titanium alloy parts by cold spraying technology was reviewed, produce wear resistance coating directly by cold spraying technology was analyzed.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2010 ◽  
Vol 638-642 ◽  
pp. 1185-1190 ◽  
Author(s):  
Hui Jie Liu ◽  
Li Zhou ◽  
Yong Xian Huang ◽  
Qi Wei Liu

As a new solid-state welding process, friction stir welding (FSW) has been successfully used for joining low melting point materials such as aluminum and magnesium alloys, but the FSW of high melting point materials such as steels and titanium alloys is still difficult to carry out because of their strict requirements for the FSW tool. Especially for the FSW of titanium alloys, some key technological issues need to solve further. In order to accomplish the FSW of titanium alloys, a specially designed tool system was made. The system was composed of W-Re pin tool, liquid cooling holder and shielding gas shroud. Prior to FSW, the Ti-6Al-4V alloy plates were thermo-hydrogen processed to reduce the deformation resistance and tool wear during the FSW. Based on this, the thermo-hydrogen processed Ti-6Al-4V alloy with different hydrogen content was friction stir welded, and the microstructural characterizations and mechanical properties of the joints were studied. Experimental results showed that the designed tool system can fulfill the requirements of the FSW of titanium alloys, and excellent weld formation and high-strength joint have been obtained from the titanium alloy plates.


2013 ◽  
Vol 554-557 ◽  
pp. 1961-1966 ◽  
Author(s):  
Yessine Ayed ◽  
Guenael Germain ◽  
Amine Ammar ◽  
Benoit Furet

Titanium alloys are known for their excellent mechanical properties, especially at high temperature. But this specificity of titanium alloys can cause high cutting forces as well as a significant release of heat that may entail a rapid wear of the cutting tool. To cope with these problems, research has been taken in several directions. One of these is the development of assistances for machining. In this study, we investigate the high pressure coolant assisted machining of titanium alloy Ti17. High pressure coolant consists of projecting a jet of water between the rake face of the tool and the chip. The efficiency of the process depends on the choice of the operating parameters of machining and the parameters of the water jet such as its pressure and its diameter. The use of this type of assistance improves chip breaking and increases tool life. Indeed, the machining of titanium alloys is generally accompanied by rapid wear of cutting tools, especially in rough machining. The work done focuses on the wear of uncoated tungsten carbide tools during machining of Ti17. Rough and finish machining in conventional and in high pressure coolant assistance conditions were tested. Different techniques were used in order to explain the mechanisms of wear. These tests are accompanied by measurement of cutting forces, surface roughness and tool wear. The Energy-dispersive X-ray spectroscopy (EDS) analysis technique made it possible to draw the distribution maps of alloying elements on the tool rake face. An area of material deposition on the rake face, characterized by a high concentration of titanium, was noticed. The width of this area and the concentration of titanium decreases in proportion with the increasing pressure of the coolant. The study showed that the wear mechanisms with and without high pressure coolant assistance are different. In fact, in the condition of conventional machining, temperature in the cutting zone becomes very high and, with lack of lubrication, the cutting edge deforms plastically and eventually collapses quickly. By contrast, in high pressure coolant assisted machining, this problem disappears and flank wear (VB) is stabilized at high pressure. The sudden rupture of the cutting edge observed under these conditions is due to the propagation of a notch and to the crater wear that appears at high pressure. Moreover, in rough condition, high pressure assistance made it possible to increase tool life by up to 400%.


2016 ◽  
Vol 704 ◽  
pp. 75-84 ◽  
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Ajit Pal Singh ◽  
Stella Raynova ◽  
Hui Yang Lu ◽  
...  

Blended Elemental Powder Metallurgy (BE-PM) is a very attractive method for producing titanium alloys, which can be near-net shape formed with compositional freedom. However, a minimization of oxygen pick-up during processing into manufactured parts is a big challenge for powder metallurgy of titanium alloys. In this paper, different approaches for preparing titanium alloy parts by powder compact extrusion with 0.05-0.1wt.% of oxygen pick-up during manufacturing are discussed. The starting materials were a powder mixture of HDH titanium powder, other elemental powders and a master alloy powder. Different titanium alloys and composites, such as Ti-6Al-4V, Ti-4Al-4Sn-4Mo-0.5Si, Ti-5Al-5V-5Mo-3Cr, and Ti-5Al-5V-5Mo-3Cr-5vol%TiB, with different profiles such as round and rectangular bars, a wedge profile, wire and tubes have been successfully manufactured on a laboratory and pilot-plant scale. Furthermore, a possible route for scaling up the titanium processing capabilities in the University of Waikato has also been discussed.


2021 ◽  
pp. 301-308
Author(s):  
V.V. Altukhova ◽  
R.F. Krupsky ◽  
A.A. Krivenok ◽  
O.G. Shakirova

It is shown that vibroabrasive treatment of hardened titanium alloy specimens contributes to an increase in their durability. This effect is explained by the removal of a defective surface layer containing microcracks and subject to the influence of residual tensile stresses. It is shown that the proposed stage of vibro-abrasive processing with ceramic granules makes it possible to almost completely remove iron introduced after vibro-impact surface hardening, which makes it possible to exclude the operation of etching in nitric acid from the technological process. The current state of research on durability in world science is briefly presented.


2021 ◽  
Vol 316 ◽  
pp. 515-520
Author(s):  
Vladimir A. Nosenko ◽  
Alexander V. Fetisov ◽  
Nikita D. Serdyukov

The high adhesive activity of titanium alloys in interaction with abrasive materials is the main cause of poor grinding treatment. The most common abrasive material for grinding titanium alloys is silicon carbide. Silicon carbide wheels operate primarily in self-sharpening mode. Wear of the abrasive tool in the self-sharpening mode occurs as a result of brittle destruction of the fret. The purpose of the study was to determine experimentally the crystalline wear products of an abrasive tool, made of silicon carbide, on the treated surface during grinding of a titanium alloy. Samples of VT9 titanium alloy were processed by flat mortise grinding by a wheel of silicon carbide with the use of VOLTES coolant and the characteristic of the abrasive tool - 64CF80L7V. The treated surface was examined on the electron microscope Versa 3D Dual Beam. The condition of the treated surface testifies to the intensive adhesive interaction of the titanium alloy with the abrasive tool. The thickness of the metal deposits reaches 3 microns. As a result of morphological analysis, objects are identified on the treated surface, the appearance of which allows us to attribute them to crystals. The chemical composition of the selected objects was determined by a microprobe analysis in a microscope camera. On the basis of the conducted researches, a presence on the grinded surface of silicon carbide crystals of various sizes and a ceramic ligament is established.


Author(s):  
Haiyang Fan ◽  
Yahui Liu ◽  
Shoufeng Yang

Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.


2010 ◽  
Vol 150-151 ◽  
pp. 51-55 ◽  
Author(s):  
Jun Du ◽  
Ping Zhang ◽  
Jun Jun Zhao ◽  
Zhi Hai Cai

Titanium alloys are susceptible to sand erosion, hard zirconium nitride coatings have been deposited onto titanium alloys by Physical vapor deposition (PVD) in order to improve erosion resistance. Al and Cu were added into ZrN coatings to strength and toughing the coating. The microstructure and mechanical properties of ZrAlCuN coating were studied. Erosion tests were conducted to evaluate anti-erosion ability. Erosion rates were measured and characteristic damage features were identified on the surface of eroded specimens. The mechanisms of erosion are discussed in order to explain the promising performance of materials in erosive conditions. It was found that there is an significant increase of erosion resistance because of the increase of hardness and toughness.


Sign in / Sign up

Export Citation Format

Share Document