Tip‐Enhanced Electric Field: A New Mechanism Promoting Mass Transfer in Oxygen Evolution Reactions

2021 ◽  
pp. 2007377
Author(s):  
Peng Liu ◽  
Bo Chen ◽  
Caiwu Liang ◽  
Wentao Yao ◽  
Yuanzheng Cui ◽  
...  
2018 ◽  
Vol 8 (9) ◽  
pp. 1566 ◽  
Author(s):  
Manuel Martí-Calatayud ◽  
Montserrat García-Gabaldón ◽  
Valentín Pérez-Herranz

Electrodialysis is utilized for the deionization of saline streams, usually formed by strong electrolytes. Recently, interest in new applications involving the transport of weak electrolytes through ion-exchange membranes has increased. Clear examples of such applications are the recovery of valuable metal ions from industrial effluents, such as electronic wastes or mining industries. Weak electrolytes give rise to a variety of ions with different valence, charge sign and transport properties. Moreover, development of concentration polarization under the application of an electric field promotes changes in the chemical equilibrium, thus making more complex understanding of mass transfer phenomena in such systems. This investigation presents a set of experiments conducted with salts of multivalent metals with the aim to provide better understanding on the involved mass transfer phenomena. Chronopotentiometric experiments and current-voltage characteristics confirm that shifts in chemical equilibria can take place simultaneous to the activation of overlimiting mass transfer mechanisms, that is, electroconvection and water dissociation. Electroconvection has been proven to affect the type of precipitates formed at the membrane surface thus suppressing the simultaneous dissociation of water. For some electrolytes, shifts in the chemical equilibria forced by an imposed electric field generate new charge carriers at specific current regimes, thus reducing the system resistance.


Volume 3 ◽  
2004 ◽  
Author(s):  
Tov Elperin ◽  
Andrew Fominykh ◽  
Zakhar Orenbakh

In this study we considered mass transfer in a binary system comprising a stationary fluid dielectric sphere embedded into an immiscible dielectric liquid under the influence of an alternating electric field. Fluid sphere is assumed to be solvent-saturated so that an internal resistance to mass transfer can be neglected. Mass flux is directed from a fluid sphere to a host medium, and the applied electric field causes a creeping flow around the sphere. Droplet deformation under the influence of the electric field is neglected. The problem is solved in the approximations of a thin concentration boundary layer and finite dilution of a solute in the solvent. The thermodynamic parameters of a system are assumed constant. The nonlinear partial parabolic differential equation of convective diffusion is solved by means of a generalized similarity transformation, and the solution is obtained in a closed analytical form for all frequencies of the applied electric field. The rates of mass transfer are calculated for both directions of fluid motion — from the poles to equator and from the equator to the poles. Numerical calculations show essential (by a factor of 2–3) enhancement of the rate of mass transfer in water droplet–benzonitrile and droplet of carbontetrachloride–glycerol systems under the influence of electric field for a stagnant droplet. The asymptotics of the obtained solutions are discussed.


1986 ◽  
Vol 108 (2) ◽  
pp. 337-342 ◽  
Author(s):  
L. Sharpe ◽  
F. A. Morrison

Steady-state heat or mass transfer to a drop in an electric field at low values of the Reynolds number is investigated. The energy equation is solved using finite difference techniques; upwind differencing is used in approximating the convective terms. Far from the sphere, a “transmitting” boundary condition is introduced; the dimensionless temperature is held at zero for inward radial flow and the dimensionless temperature gradient is held at zero for outward radial flow at a fixed distance from the sphere’s surface. Numerical solutions are obtained using an iterative method. Creeping flow heat transfer results are obtained for Peclet numbers up to 103.


Sign in / Sign up

Export Citation Format

Share Document