scholarly journals Alternate wetting and drying reduces aquifer withdrawal in Mississippi rice production systems

2020 ◽  
Vol 112 (6) ◽  
pp. 5115-5124
Author(s):  
R. Lee Atwill ◽  
L. Jason Krutz ◽  
Jason A. Bond ◽  
Bobby R. Golden ◽  
G. Dave Spencer ◽  
...  
2020 ◽  
Vol 241 ◽  
pp. 106363 ◽  
Author(s):  
Muhammad Ishfaq ◽  
Muhammad Farooq ◽  
Usman Zulfiqar ◽  
Saddam Hussain ◽  
Nadeem Akbar ◽  
...  

2019 ◽  
Vol 235 ◽  
pp. 95-103 ◽  
Author(s):  
Yidi Sun ◽  
Guimin Xia ◽  
Zhenli He ◽  
Qi Wu ◽  
Junlin Zheng ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1629
Author(s):  
Primitiva Mboyerwa ◽  
Kibebew Kibret ◽  
Peter Mtakwa ◽  
Abebe Aschalew

Rice production in Tanzania, with 67% of its territory considered semi-dry and having average annual rainfall of 300 mm, must be increased to feed an ever-growing population. Water for irrigation and low soil fertility are among the main challenges. One way to decrease water consumption in paddy fields is to change the irrigation regime for rice production, replacing continuous flooding with alternate wetting and drying. In order to assess the impact of different irrigation regimes and nitrogen fertilizer applications on growth, yield, and water productivity of rice, a greenhouse pot experiment with soil from lowland rice ecology was conducted at Sokoine University of Agriculture, Tanzania during the 2019 cropping season. The experiment was split-plot based on randomized complete block design with 12 treatments and 3 replications. Water regimes were the main factors comparing continuous flooding (CF) and alternate wetting and drying (AWD) with nitrogen fertilizer levels as the subfactor, comparing absolute control (no fertilizer) with 0 (P and K fertilizers), 60, 90, 120, and 150 kg Nha−1. Alternate wetting and drying (AWD) significantly improved water productivity by 8.3% over CF (p < 0.05). Water productivity (WP) ranged from 0.6 to 1.5 kg of rice per m3 of water. Average water use ranged from 36 to 82 L per season, and water saving was up to 34.3%. Alternate wetting and drying significantly improved yields (p < 0.05) by 13.3%, and the yield ranged from 21.8 to 118.2 g pot−1. The combination of AWD water management and 60 kg N ha−1 nitrogen fertilization application was found to be the optimal management, however there was no significant difference between 60 and 90 kg N ha−1, in which case 60 kg N ha−1 is recommended because it lowers costs and raises net income. Nitrogen levels significantly affected water productivity, water use, and number of irrigations. Nitrogen levels had significant effect (p < 0.05) on plant height, number of tillers, flag leaf area, chlorophyll content, total tillers, number of productive tillers, panicle weight, panicle length, 1000-grain weight, straw yield, grain yield, and grain harvest index. The results showed that less water can be used to produce more crops under alternative wetting and drying irrigation practices. The results are important for water-scarce areas, providing useful information to policy makers, farmers, agricultural departments, and water management boards in devising future climate-smart adaptation and mitigation strategies.


2021 ◽  
Author(s):  
S. Porpavai ◽  
D. Yogeswari

Rice (Oryza sativa L.) is on important cereal food for more than half of the global population. Rice is a major user of fresh water accounting for approximately 50 percent of the total diverted fresh water in Asia. Due to water scarcity and huge hike in labour wage rates, direct seeded rice offers an attractive alternative for future rice production. Thus there is a need to explore alternate techniques that can sustain rice production and are resource conservative. Direct sowing of rice refers to the process of establishing a rice crop from seeds sown in the field rather than transplanting seedlings from the nursery. Direct seeded rice provides an opportunity for earlier crop establishment to make better use of early season rainfall and to increase cropping area. Effect of AWD on direct seeded rice is presented in this review paper. Direct seeded rice is a resource conservation technology as it uses less water with high efficiency, incurs low labour expenses and is conducive to mechanization. Alternate wetting and drying irrigation increased water use efficiency and water productivity of rice.


2020 ◽  
Author(s):  
Benjamin R.K. Runkle ◽  
Arlene Adviento-Borbe ◽  
Michele L. Reba ◽  
Beatriz Moreno-García ◽  
Sandhya Karki ◽  
...  

&lt;p&gt;Rice production contributes roughly 11% of global CH4 anthropogenic emissions while producing food for over 3 billion people. The alternate wetting and drying (AWD) irrigation practice for rice has the potential to conserve water while reducing CH&lt;sub&gt;4&lt;/sub&gt; emissions through the deliberate, periodic introduction of aerobic soil conditions. Our work in the US Mid-South rice production region has demonstrated, using the eddy covariance method on adjacent fields, that AWD can reduce field CH&lt;sub&gt;4&lt;/sub&gt; emissions by about 66% without impacting yield. In any strategy, CO&lt;sub&gt;2&lt;/sub&gt; and N&lt;sub&gt;2&lt;/sub&gt;O emissions should also be monitored to take advantage of the high carbon sequestration potential of rice and low potential N&lt;sub&gt;2&lt;/sub&gt;O emissions. Careful water and fertilizer management can theoretically keep N&lt;sub&gt;2&lt;/sub&gt;O emissions low. All three gases should be managed together, while sustaining or improving harvest yield, to create a sustainable rice production system.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;We now present 5 years of closed chamber measurements of N&lt;sub&gt;2&lt;/sub&gt;O and CH&lt;sub&gt;4&lt;/sub&gt; and compare them to the eddy covariance measurements of CH&lt;sub&gt;4&lt;/sub&gt; and CO&lt;sub&gt;2&lt;/sub&gt; to derive a more thorough perspective on the net greenhouse gas (GHG) emissions or global warming potential basis of rice production from the highly productive, mechanized, humid, US Mid-South. Global warming potential of GHG emissions from rice systems was dominated by CH&lt;sub&gt;4&lt;/sub&gt; emissions (74 to 100%), hence mitigating efforts need to focus on CH&lt;sub&gt;4&lt;/sub&gt; emissions. Greater reduction of CH&lt;sub&gt;4&lt;/sub&gt; emissions can be achieved by proper AWD management practice combined with adequate N fertilization. We end with a comment on the upcoming challenge of how to sequester CO&lt;sub&gt;2&lt;/sub&gt; uptake as soil organic matter via litter incorporation without increasing CH&lt;sub&gt;4&lt;/sub&gt; emissions.&amp;#160;&lt;/p&gt;


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6040
Author(s):  
Mushran Siddiqui ◽  
Farhana Akther ◽  
Gazi M. E. Rahman ◽  
Mohammad Mamun Elahi ◽  
Raqibul Mostafa ◽  
...  

Water, one of the most valuable resources, is underutilized in irrigated rice production. The yield of rice, a staple food across the world, is highly dependent on having proper irrigation systems. Alternate wetting and drying (AWD) is an effective irrigation method mainly used for irrigated rice production. However, unattended, manual, small-scale, and discrete implementations cannot achieve the maximum benefit of AWD. Automation of large-scale (over 1000 acres) implementation of AWD can be carried out using wide-area wireless sensor network (WSN). An automated AWD system requires three different WSNs: one for water level and environmental monitoring, one for monitoring of the irrigation system, and another for controlling the irrigation system. Integration of these three different WSNs requires proper dimensioning of the AWD edge elements (sensor and actuator nodes) to reduce the deployment cost and make it scalable. Besides field-level monitoring, the integration of external control parameters, such as real-time weather forecasts, plant physiological data, and input from farmers, can further enhance the performance of the automated AWD system. Internet of Things (IoT) can be used to interface the WSNs with external data sources. This research focuses on the dimensioning of the AWD system for the multilayer WSN integration and the required algorithms for the closed loop control of the irrigation system using IoT. Implementation of the AWD for 25,000 acres is shown as a possible use case. Plastic pipes are proposed as the means to transport and control proper distribution of water in the field, which significantly helps to reduce conveyance loss. This system utilizes 250 pumps, grouped into 10 clusters, to ensure equal water distribution amongst the users (field owners) in the wide area. The proposed automation algorithm handles the complexity of maintaining proper water pressure throughout the pipe network, scheduling the pump, and controlling the water outlets. Mathematical models are presented for proper dimensioning of the AWD. A low-power and long-range sensor node is developed due to the lack of cellular data coverage in rural areas, and its functionality is tested using an IoT platform for small-scale field trials.


Author(s):  
Primitiva Andrea Mboyerwa ◽  
Peter W. Mtakwa ◽  
Kibebew Kibret ◽  
Abebe Aschalew ◽  
Norman T. Uphoff

Tanzania with 945 million hectares of land area and annual rainfall of 300 mm on 67% of its territorial land is considered as a semi-dry region in the world. Rice production in Tanzania needs to be increased to feed a growing population, whereas water for irrigation is getting scarce. One way to decrease water consumption in paddy fields is to change the irrigation regime for rice production and to replace continuous flooding with alternate wetting and drying. In order to investigate the effect of different regimes of irrigation and nitrogen fertilizer on yield and water productivity of hybrid rice, two greenhouse pot experiments comprising soils from upland and lowland production ecologies were conducted at Sokoine University of Agriculture, Tanzania during crop seasons of 2019. The experiment was arranged in split plots based on randomized completely block design with 3 replications. Water regimes were the main factor comparing continuous flooding (CF) and alternate wetting and drying (AWD) with nitrogen fertilizer levels as the sub-factor including absolute control , 0, 60, 90, 120 and 150 kg/ha. Alternate wetting and drying (AWD) improved water productivity in both upland and lowland production ecologies compared to CF. AWD increased yield under lowland production by 13.3% while in upland there was 18.5% decrease in yield. The average water use varied from 31.5 to 84 L pot-1 under upland trials, while in lowland trials it was 36 to 82.3 L. Higher yield and lower water application led to an increase in WP varying from 1.2 to 1.8 kg cm-3 under upland trials, and 0.6 to 1.5 kg cm-3 under lowland trials. The variation in water productivity among treatments was mainly due to the differences in the yield, water and nitrogen levels used in the production process. Both sets of trials recorded water saving up to 34.3% and 17.3% under lowland and upland trials, respectively. Under upland trials, the yield varied from 39.9 to 124.1 g pot-1 and in lowland trials yield ranged from 20.6 to 118.2 g pot-1 representing paddy rice. The measurements showed that less water can be used to produce more crops under alternative rice growing practices. The results are important for water-scarce areas, providing useful information to policy makers, farmers, agricultural departments, and water management boards in devising future climate-smart adaptation and mitigation strategies.


2021 ◽  
Vol 247 ◽  
pp. 106758
Author(s):  
Komlavi Akpoti ◽  
Elliott R. Dossou-Yovo ◽  
Sander J. Zwart ◽  
Paul Kiepe

Sign in / Sign up

Export Citation Format

Share Document