scholarly journals A Capacitive and Piezoresistive Hybrid Sensor for Long‐Distance Proximity and Wide‐Range Force Detection in Human–Robot Collaboration

2021 ◽  
pp. 2100213
Author(s):  
Chuanyang Ge ◽  
Zhenlong Wang ◽  
Zhe Liu ◽  
Tianhao Wu ◽  
Shuai Wang ◽  
...  
2020 ◽  
Vol 22 (3) ◽  
pp. 2070011
Author(s):  
Peng-Juan Cao ◽  
Yiwei Liu ◽  
Waqas Asghar ◽  
Chao Hu ◽  
Fali Li ◽  
...  

2020 ◽  
Vol 22 (3) ◽  
pp. 1901239 ◽  
Author(s):  
Peng-Juan Cao ◽  
Yiwei Liu ◽  
Waqas Asghar ◽  
Chao Hu ◽  
Fali Li ◽  
...  

Botany ◽  
2018 ◽  
Vol 96 (8) ◽  
pp. 533-545 ◽  
Author(s):  
Christopher M. Balogh ◽  
Spencer C.H. Barrett

Sexual reproduction in heterostylous populations may be vulnerable to demographic conditions because of the small number of mating types in populations. Here, we investigate mating and fertility under natural and experimental conditions in tristylous Lythrum salicaria L., an invasive species that exhibits a wide range of floral morph ratios and demographic contexts. We grew 147 open-pollinated seed families from six populations with different morph structures to estimate intermorph mating (d). In a field experiment, we used progeny ratios from 47 spatially isolated individuals to estimate d, and measured the intensity of pollen limitation experienced by the morphs. The M- and S-morphs experienced high rates of d, regardless of population size or morph ratio. Estimates for the L-morph revealed low levels of intramorph mating in three dimorphic and two trimorphic populations, but near complete intramorph mating in a monomorphic population. Despite high levels of intermorph mating in the field experiment, the morphs experienced significant pollen limitation of fruit and seed set, but this did not differ in intensity among the morphs. Our field experiment demonstrates that although plant isolation was associated with pollen limitation of seed set, “long-distance” bee-mediated pollen flow served to maintain intermorph mating. Tristyly in L. salicaria is remarkably robust to the demographic variation associated with colonization.


2020 ◽  
Vol 383 ◽  
pp. 123103 ◽  
Author(s):  
Yuqin Wan ◽  
Ning Qin ◽  
Yifan Wang ◽  
Qingbai Zhao ◽  
Qiang Wang ◽  
...  
Keyword(s):  

2020 ◽  
Vol 38 (1) ◽  
pp. 201-214 ◽  
Author(s):  
Paul Campitelli ◽  
Liskin Swint-Kruse ◽  
S Banu Ozkan

Abstract Amino acid substitutions at nonconserved protein positions can have noncanonical and “long-distance” outcomes on protein function. Such outcomes might arise from changes in the internal protein communication network, which is often accompanied by changes in structural flexibility. To test this, we calculated flexibilities and dynamic coupling for positions in the linker region of the lactose repressor protein. This region contains nonconserved positions for which substitutions alter DNA-binding affinity. We first chose to study 11 substitutions at position 52. In computations, substitutions showed long-range effects on flexibilities of DNA-binding positions, and the degree of flexibility change correlated with experimentally measured changes in DNA binding. Substitutions also altered dynamic coupling to DNA-binding positions in a manner that captured other experimentally determined functional changes. Next, we broadened calculations to consider the dynamic coupling between 17 linker positions and the DNA-binding domain. Experimentally, these linker positions exhibited a wide range of substitution outcomes: Four conserved positions tolerated hardly any substitutions (“toggle”), ten nonconserved positions showed progressive changes from a range of substitutions (“rheostat”), and three nonconserved positions tolerated almost all substitutions (“neutral”). In computations with wild-type lactose repressor protein, the dynamic couplings between the DNA-binding domain and these linker positions showed varied degrees of asymmetry that correlated with the observed toggle/rheostat/neutral substitution outcomes. Thus, we propose that long-range and noncanonical substitutions outcomes at nonconserved positions arise from rewiring long-range communication among functionally important positions. Such calculations might enable predictions for substitution outcomes at a range of nonconserved positions.


Aerospace ◽  
2020 ◽  
Vol 7 (10) ◽  
pp. 141
Author(s):  
Nolan M. Uchizono ◽  
Adam L. Collins ◽  
Anirudh Thuppul ◽  
Peter L. Wright ◽  
Daniel Q. Eckhardt ◽  
...  

Electrospray thruster life and mission performance are strongly influenced by grid impingement, the extent of which can be correlated with emission modes that occur at steady-state extraction voltages, and thruster command transients. Most notably, we experimentally observed skewed cone-jet emission during steady-state electrospray thruster operation, which leads to the definition of an additional grid impingement mechanism that we termed “tilted emission”. Long distance microscopy was used in conjunction with high speed videography to observe the emission site of an electrospray thruster operating with an ionic liquid propellant (EMI-Im). During steady-state thruster operation, no unsteady electrohydrodynamic emission modes were observed, though the conical meniscus exhibited steady off-axis tilt of up to 15°. Cone tilt angle was independent over a wide range of flow rates but proved strongly dependent on extraction voltage. For the geometry and propellant used, the optimal extraction voltage was near 1.6 kV. A second experiment characterized transient emission behavior by observing startup and shutdown of the thruster via flow or voltage. Three of the four possible startup and shutdown procedures transition to quiescence within ∼475 μs, with no observed unsteady modes. However, during voltage-induced thruster startup, unsteady electrohydrodynamic modes were observed.


Author(s):  
Wenlong Zhao ◽  
Jian Zhang ◽  
Xiaodong Yu ◽  
Daqing Zhou ◽  
Melih Calamak

Tubular pumps are widely used in irrigation and water conveyance projects. However, the operating head of most of these pumps is low, and only a few studies have focused on the design of an efficient tubular pump with a head more than 5 m, which is common in long-distance water supply projects. This work aims to improve the operating head and efficiency of tubular pumps while maintaining a low shaft power. The multi-objective orthogonal optimization method was used to determine the critical parameters of the tubular pump, i.e., blade number, airfoil, blade thickness and guide vane distance, and nine design schemes were selected. Next, by using computational fluid dynamics (CFD), a 3D model of the tubular pumps under different schemes was established, and the results were compared. Subsequently, the range method and weighted matrix method were utilized to find the optimized scheme. In addition, an experimental investigation was performed to verify the simulation and the performance of the designed tubular pump. The results indicated that the optimized scheme improved the operating head to 6.9 m with higher efficiency of 84.2% and a lower shaft power of 27.7 kW. The modeling results were in agreement with the experimental measurements, and the designed tubular pump had a wide range of high-efficiency zones.


2018 ◽  
Vol 26 (1) ◽  
pp. 719-747 ◽  
Author(s):  
Joanna Then-Obłuska

More than 200 beads and pendants were found in seven trash middens excavated at the 4th/5th to the 6th century AD settlement site in Shenshef in the Eastern Desert of Egypt. The site lies close to the Sudanese border and the Red Sea coast, and about 20 km to the southwest of the ancient port of Berenike. Although the purpose of the settlement has not been established, excavations provided a wide range of imports from the Mediterranean region and the Indian Ocean. An overview of the materials and manufacturing techniques applied in the production of the beads and pendants confirms the short- and long-distance contacts of Shenshef inhabitants. In addition to the many bead parallels that link the site with the Red Sea ports and the Nile Valley region up to the First Cataract, the presence of South Indian/Sri Lankan beads at Shenshef is especially meaningful. They may be proof of the intermediary role played by the Shenshef inhabitants in trading overseas imports into the Nubian Nile Valley region.


2020 ◽  
Vol 12 (0) ◽  
pp. 1-5
Author(s):  
Nino Inasariadze ◽  
Vaidotas Vaišis

The article discusses IoT based solutions to improve waste collection and monitoring in public waste containers. The paper examines whether the monitoring system used in the measurement process can be used to monitor the filling of containers. The system consists of a wireless module connected to an ultrasonic sensor. The data sent makes it possible to calculate the empty space in the waste containers. The values are obtained by measuring the distance from the top of the container to the surface of the waste. Low-power long-distance broadband network (LoRaWAN) transmitters were used for data transmission. The aim of the research: to test an inexpensive monitoring system and to describe a new system of sensors and transmitter modules. The system is characterized by extremely low power consumption and a wide range of sensors used. Measurements were performed in Vilnius. Containers of two types of sizes were analyzed, measurements were performed at five points of horizontal cross section of the containers. The study was performed at two different levels of container filling. The results show that an ultrasonic sensor can representatively measure waste filling depths at different levels of container filling. Based on the results, this sensor can be recommended in the intelligent waste management market. Such a system can provide the necessary data for optimizing waste collection processes in cities and avoid container overcrowding problems.


Sign in / Sign up

Export Citation Format

Share Document