scholarly journals Brief communication: Correlation between elastic modulus and radiographic density in mandibular cortical bone of colobine monkeys

2017 ◽  
Vol 163 (1) ◽  
pp. 187-191 ◽  
Author(s):  
Andrew J. Rapoff ◽  
W. Scott McGraw ◽  
Ana Duque ◽  
David J. Daegling
2015 ◽  
Vol 15 (05) ◽  
pp. 1550074 ◽  
Author(s):  
MICHAEL CHITTENDEN ◽  
AHMAD RAEISI NAJAFI ◽  
JUN LI ◽  
IWONA JASIUK

Composition-structure-property relations of bone provide fundamental understanding of bone quality. The objective of this paper was to investigate age dependent changes in the composition, structure and mechanical properties of porcine femoral cortical bone at mid-diaphysis region from six age groups (1, 3.5, 6, 12, 30, 48 months). This study was motivated by the fact that limited data is available in the literature on young porcine cortical bone. Nanoindentation technique with Berkovich fluid cell tip was employed to measure the elastic modulus and hardness. Individual lamellae were indented in the longitudinal direction of bone in different microstructural components (osteonal, interstitial and plexiform bone). A grid of indentations was also made on one bone sample to obtain spatial variations in the elastic modulus and hardness. Ash and water content tests were performed to measure water, organic and mineral contents of bone as a function of age. Finally, high resolution micro-computed tomography was used to measure porosity and visualize three-dimensional void structures. We found that the elastic modulus and hardness of bone increased with age but at different rates in each microstructural component. The mineral content increased correspondingly with age while the porosity decreased. The obtained structure, composition, and mechanical properties data give new insights on the age related changes in young cortical bone and can serve as inputs for and validation of multiscale models of bone.


2019 ◽  
Vol 2019.56 (0) ◽  
pp. D044
Author(s):  
Shinya KUWAHARA ◽  
Takahiro KINOSHITA ◽  
Takashi KAWAKAMI

2015 ◽  
Vol 2015 (0) ◽  
pp. _G0200204--_G0200204-
Author(s):  
Koichiro CHIKAHISA ◽  
Satoshi YAMADA ◽  
Masahiro TODOH ◽  
Shigeru TADANO

2004 ◽  
Vol 844 ◽  
Author(s):  
Amanpreet K. Bembey ◽  
Vanessa Koonjul ◽  
Andrew J. Bushby ◽  
Virginia L. Ferguson ◽  
Alan Boyde

ABSTRACTCortical bone is an anisotropic material, and its mechanical properties are determined by its composition as well as its microstructure. Mechanical properties of bone are a consequence of the proportions of, and the interactions between, mineral, collagen and water. Mid-shaft palmar cortical tissue from the equine third metacarpal bone is relatively dense and uniform with low porosity. The mainly primary osteons are aligned to within a few degrees of the long axis of the bone. Beams of compact cortical bone were prepared to examine effects of dehydration and embedding and to study contribution of collagen and mineral to nano-scale material properties. Five beams were tested: untreated (hydrated); 100% ethanol (dehydrated); or embedded in poly-methylmethacrylate (PMMA) for one normal, one decalcified, and one deproteinated bone sample. Elastic modulus was obtained by nanoindentation using spherical indenters, with the loading direction transverse [1] and longitudinal to the bone axis. By selectively removing water, mineral and organic components from the composite, insights into the ultrastructure of the tissue can be gained from the corresponding changes in the experimentally determined elastic moduli.


2008 ◽  
Vol 20 (03) ◽  
pp. 139-143 ◽  
Author(s):  
Jui-Ting Hsu ◽  
Ming-Tzu Tsai ◽  
Heng-Li Huang

It would be useful to be able to determine the mechanical properties of bone using a noninvasive technique such as computed tomography (CT). However, in contrast to cancellous bone tissue, quantifying the elastic modulus of cortical bone from bone density and CT number has not been investigated extensively. This study measured the elastic moduli of cortical bone from eight bovine femora in the longitudinal, circumferential, and radial directions using mechanical compressive testing. Before testing, the CT number and wet apparent bone density were obtained. The experimentally determined coefficient of determination between CT number and bone density was around 0.6. Bone density was a good predictor of the elastic modulus of cortical bone in the longitudinal direction (r2 > 0.79), but it could not be used to predict the elastic moduli in the circumferential (r2 < 0.4) and radial (r2 < 0.22) directions. The coefficient of determination between CT number and the elastic modulus in the longitudinal direction was higher than 0.41. However, the correlations between CT number and elastic moduli were weak in the circumferential (r2 < 0.21) and radial (r2 < 0.19) directions. Moreover, the elastic modulus was much higher in the longitudinal direction than the circumferential and radial directions, and hence cortical bone can be considered a transversely isotropic property.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012224
Author(s):  
N Ganesh ◽  
S Rambabu

Abstract In this article, design and finite element simulation of porous Ti-6Al-4V alloy structures was presented. Typically, titanium and titanium alloy implants can be manufactured with required pore size and porosity volume by using powder bed fusion techniques due to advancement in additive manufacturing technologies. However, the mismatch of elastic modulus between human cortical bone and the dense Ti-6Al-4V alloy implant resulted in stress shielding which accelerate the implant failure. The porous implant structures help in reduce the mismatch of elastic modulus between the cortical bone and implant structure and also improve the bone ingrowth. Hence, the present work focuses on design of Ti-6Al-4V alloy porous structures with various porosities ranging from 10% to 70% and simulated to determine the elastic modulus suitable for human cortical bone. The sample with 45% porosity is found to be best suited for replacement of cortical bone with elastic modulus of 74Gpa, preventing stress shielding effect and enhanced chances of bone ingrowth.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Changqi Luo ◽  
Junyi Liao ◽  
Zhenglin Zhu ◽  
Xiaoyu Wang ◽  
Xiao Lin ◽  
...  

The effect of age on mechanical behavior and microstructure anisotropy of bone is often ignored by researchers engaged in the study of biomechanics. The objective of our study was to determine the variations in mechanical properties of canine femoral cortical bone with age and the mechanical anisotropy between the longitudinal and transverse directions. Twelve beagles divided into three age groups (6, 12, and 36 months) were sacrificed and all femurs were extracted. The longitudinal and transverse samples of cortical bone were harvested from three regions of diaphysis (proximal, central, and distal). A nanoindentation technique was used for simultaneously measuring force and displacement of a diamond tip pressed 2000nm into the hydrated bone tissue. An elastic modulus was calculated from the unloading curve with an assumed Poisson ratio of 0.3, while hardness was defined as the maximal force divided by the corresponding contact area. The mechanical properties of cortical bone were determined from 852 indents on two orthogonal cross-sectional surfaces. Mean elastic modulus ranged from 7.56±0.32 GPa up to 21.56±2.35 GPa, while mean hardness ranged from 0.28±0.057 GPa up to 0.84±0.072 GPa. Mechanical properties of canine femoral cortical bone tended to increase with age, but the magnitudes of these increase for each region might be different. The longitudinal mechanical properties were significantly higher than that of transverse direction (P<0.01). A significant anisotropy was found in the mechanical properties while there was no significant correlation between the two orthogonal directions in each age group (r2<0.3). Beyond that, the longitudinal mechanical properties of the distal region in each age group were lower than the proximal and central regions. Hence, mechanical properties in nanostructure of bone tissue must differ mainly among age, sample direction, anatomical sites, and individuals. These results may help a number of researchers develop more accurate constitutive micromechanics models of bone tissue in future studies.


Sign in / Sign up

Export Citation Format

Share Document