scholarly journals Loss of progranulin leads to dysregulation of innate and adaptive immune cell populations, increased susceptibility to experimental colitis, and brain infiltration of peripheral immune cells

2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Cody E. Keating ◽  
Madelyn C. Houser ◽  
Kathryn P. MacPherson ◽  
Mary K. Herrick ◽  
Alexandra Coomes ◽  
...  
2014 ◽  
Vol 28 (S1) ◽  
Author(s):  
Colleen Munoz ◽  
Jenna Apicella ◽  
Shlomit Radom‐Aizik ◽  
Carl Maresh ◽  
Faddia Haddad ◽  
...  

Author(s):  
Xiaofeng Yang ◽  
Tongxin Dai ◽  
Xiaobo Zhou ◽  
Hongbo Qian ◽  
Rui Guo ◽  
...  

AbstractCoronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, has rapidly spread to most of countries in the world, threatening the health and lives of many people. Unfortunately, information regarding the immunological characteristics in COVID-19 patients remains limited. Here we collected the blood samples from 18 healthy donors (HD) and 38 COVID-19 patients to analyze changes in the adaptive immune cell populations and phenotypes. In comparison to HD, the lymphocyte percentage was slightly decreased, the percentages of CD4 and CD8 T cells in lymphocytes are similar, whereas B cell percentage increased in COVID-19 patients. T cells, especially CD8 T cells, showed an enhanced expression of late activation marker CD25 and exhaustion marker PD-1. Importantly, SARS-CoV-2 induced an increased percentage of T follicular helpher (Tfh)- and germinal center B-like (GCB-like) cells in the blood. However, the parameters in COVD-19 patients remained unchanged across various age groups. Therefore, we demonstrated that the T and B cells can be activated normally and exhibit functional features. These data provide a clue that the adaptive immunity in most people could be primed to induce a significant immune response against SARS-CoV-2 infection upon receiving standard medical care.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hui Xu ◽  
Jianping Jia

The peripheral immune system is thought to affect the pathology of the central nervous system in Alzheimer’s disease (AD). However, current knowledge is inadequate for understanding the characteristics of peripheral immune cells in AD. This study aimed to explore the molecular basis of peripheral immune cells and the features of adaptive immune repertoire at a single cell level. We profiled 36,849 peripheral blood mononuclear cells from AD patients with amyloid-positive status and normal controls with amyloid-negative status by 5’ single-cell transcriptome and immune repertoire sequencing using the cell ranger standard analysis procedure. We revealed five immune cell subsets: CD4+ T cells, CD8+ T cells, B cells, natural killer cells, and monocytes–macrophages cells, and disentangled the characteristic alterations of cell subset proportion and gene expression patterns in AD. Thirty-one cell type-specific key genes, comprising abundant human leukocyte antigen genes, and multiple immune-related pathways were identified by protein–protein interaction network and pathway enrichment analysis. We also found high-frequency amplification clonotypes in T and B cells and decreased diversity in T cells in AD. As clone amplification suggested the activation of an adaptive immune response against specific antigens, we speculated that the peripheral adaptive immune response, especially mediated by T cells, may have a role in the pathogenesis of AD. This finding may also contribute to further research regarding disease mechanism and the development of immune-related biomarkers or therapy.


Author(s):  
Tissa Wijeratne ◽  
Carmela Sales ◽  
Rohit Menon ◽  
Leila Karimi ◽  
Mihajlo Jakovljevic

Stroke is one of the leading cause of adult disability and the second leading cause of death worldwide. The immune system actively participates in the pathobiological process of AIS, during the index event and during the repair process despite the limited attention drawn to this aspect in the existing stroke guidelines globally. The similar clinical course and similar circulating innate and adaptive immune cell counts in AIS and COVID-19 has created a renewed interest in these easily available biomarkers innate and adaptive immunological changes in AIS with potential diagnostic, prognostic, and therapeutic implications. The current scoping review aimed to assess the significance of circulating neutrophil and lymphocyte counts and their ratio (NLR) in AIS and explore their association with post-stroke recovery trajectory. The Arksey and O'Malley methodological framework was employed to review the published papers on the neutrophil-lymphocyte ratio (NLR) and AIS in late November 2020. Only studies published in English from 2000-2020 were included in this scoping review. Fifty-three published papers were reviewed. This review's key finding is that a canonical inflammatory response occurs in AIS just as in the case of COVID-19 and neurological involvements well described in the recent literature. An excessive circulating innate immune cells (neutrophils) and reduced circulating adaptive immune cells (lymphocytes ) are associated with poorer outcomes during the acute interventions ( reperfusion therapies) as well as the recovery trajectory. Main representatives of innate and adaptive immunity follow a canonical course in AIS and COVID-19. Exaggerated circulating innate ( elevated neutrophils and elevated NLR) and reduced adaptive immune response (lymphopenia) correlate with the worse outcome in AIS and COVID-19. This scoping review's findings make the strongest case for a systems biology-based approach to the standard operating procedures in stroke care urgently.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
Denise Utami Putri ◽  
Cheng-Hui Wang ◽  
Po-Chun Tseng ◽  
Wen-Sen Lee ◽  
Fu-Lun Chen ◽  
...  

The heterogeneity of immune response to COVID-19 has been reported to correlate with disease severity and prognosis. While so, how the immune response progress along the period of viral RNA-shedding (VRS), which determines the infectiousness of disease, is yet to be elucidated. We aim to exhaustively evaluate the peripheral immune cells to expose the interplay of the immune system in uncomplicated COVID-19 cases with different VRS periods and dynamic changes of the immune cell profile in the prolonged cases. We prospectively recruited four uncomplicated COVID-19 patients and four healthy controls (HCs) and evaluated the immune cell profile throughout the disease course. Peripheral blood mononuclear cells (PBMCs) were collected and submitted to a multi-panel flowcytometric assay. CD19+-B cells were upregulated, while CD4, CD8, and NK cells were downregulated in prolonged VRS patients. Additionally, the pro-inflammatory-Th1 population showed downregulation, followed by improvement along the disease course, while the immunoregulatory cells showed upregulation with subsequent decline. COVID-19 patients with longer VRS expressed an immune profile comparable to those with severe disease, although they remained clinically stable. Further studies of immune signature in a larger cohort are warranted.


Open Biology ◽  
2017 ◽  
Vol 7 (4) ◽  
pp. 170006 ◽  
Author(s):  
B. Calì ◽  
B. Molon ◽  
A. Viola

Host immunity plays a central and complex role in dictating tumour progression. Solid tumours are commonly infiltrated by a large number of immune cells that dynamically interact with the surrounding microenvironment. At first, innate and adaptive immune cells successfully cooperate to eradicate microcolonies of transformed cells. Concomitantly, surviving tumour clones start to proliferate and harness immune responses by specifically hijacking anti-tumour effector mechanisms and fostering the accumulation of immunosuppressive immune cell subsets at the tumour site. This pliable interplay between immune and malignant cells is a relentless process that has been concisely organized in three different phases: elimination, equilibrium and escape. In this review, we aim to depict the distinct immune cell subsets and immune-mediated responses characterizing the tumour landscape throughout the three interconnected phases. Importantly, the identification of key immune players and molecules involved in the dynamic crosstalk between tumour and immune system has been crucial for the introduction of reliable prognostic factors and effective therapeutic protocols against cancers.


2021 ◽  
Vol 15 ◽  
Author(s):  
Carlos del Pilar ◽  
Rafael Lebrón-Galán ◽  
Ester Pérez-Martín ◽  
Laura Pérez-Revuelta ◽  
Carmelo Antonio Ávila-Zarza ◽  
...  

The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.


Sign in / Sign up

Export Citation Format

Share Document