The search for a convenient procedure to detect one of the earliest signs of Alzheimer's disease: A systematic review of the prediction of brain amyloid status

2021 ◽  
Author(s):  
Miriam T. Ashford ◽  
Dallas P. Veitch ◽  
John Neuhaus ◽  
Rachel L. Nosheny ◽  
Duygu Tosun ◽  
...  
2019 ◽  
Author(s):  
Clemens Kruse ◽  
Britney Larson ◽  
Reagan Wilkinson ◽  
Roger Samson ◽  
Taylor Castillo

BACKGROUND Incidence of AD continues to increase, making it the most common cause of dementia and the sixth-leading cause of death in the United States. 2018 numbers are expected to double by 2030. OBJECTIVE We examined the benefits of utilizing technology to identify and detect Alzheimer’s disease in the diagnostic process. METHODS We searched PubMed and CINAHL using key terms and filters to identify 30 articles for review. We analyzed these articles and reported them in accordance with the PRISMA guidelines. RESULTS We identified 11 technologies used in the detection of Alzheimer’s disease: 66% of which used some form of MIR. Functional, structural, and 7T magnetic resonance imaging were all used with structural being the most prevalent. CONCLUSIONS MRI is the best form of current technology being used in the detection of Alzheimer’s disease. MRI is a noninvasive approach that provides highly accurate results in the diagnostic process of Alzheimer’s disease.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1071
Author(s):  
Lucia Billeci ◽  
Asia Badolato ◽  
Lorenzo Bachi ◽  
Alessandro Tonacci

Alzheimer’s disease is notoriously the most common cause of dementia in the elderly, affecting an increasing number of people. Although widespread, its causes and progression modalities are complex and still not fully understood. Through neuroimaging techniques, such as diffusion Magnetic Resonance (MR), more sophisticated and specific studies of the disease can be performed, offering a valuable tool for both its diagnosis and early detection. However, processing large quantities of medical images is not an easy task, and researchers have turned their attention towards machine learning, a set of computer algorithms that automatically adapt their output towards the intended goal. In this paper, a systematic review of recent machine learning applications on diffusion tensor imaging studies of Alzheimer’s disease is presented, highlighting the fundamental aspects of each work and reporting their performance score. A few examined studies also include mild cognitive impairment in the classification problem, while others combine diffusion data with other sources, like structural magnetic resonance imaging (MRI) (multimodal analysis). The findings of the retrieved works suggest a promising role for machine learning in evaluating effective classification features, like fractional anisotropy, and in possibly performing on different image modalities with higher accuracy.


2020 ◽  
Vol 50 ◽  
pp. 101250 ◽  
Author(s):  
Omonigho M. Bubu ◽  
Andreia G. Andrade ◽  
Ogie Q. Umasabor-Bubu ◽  
Megan M. Hogan ◽  
Arlener D. Turner ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Mingyue Qu ◽  
Hanxu Shi ◽  
Kai Wang ◽  
Xinggang Wang ◽  
Nan Yu ◽  
...  

Background: Multiple lines of evidence indicate protective effects of carotenoids in Alzheimer’s disease (AD). However, previous epidemiological studies reported inconsistent results regarding the associations between carotenoids levels and the risk of AD. Objective: Our study aims to evaluate the associations of six major members of carotenoids with the occurrence of AD by conducting a systematic review and meta-analysis. Methods: Following PRISMA guidelines, a comprehensive literature search of PubMed, Web of Science, Ebsco, and PsycINFO databases was conducted, and the quality of each included studies was evaluated by a validated scoring systems. Standardized mean differences (SMD) with 95%confidence intervals (CI) were determined by using a random effects model. Heterogeneity was evaluated by I2 statistics. Publication bias was detected using funnel plots and Egger’s test. Results: Sixteen studies, with 10,633 participants were included. Pooled analysis showed significantly lower plasma/serum levels of lutein (SMD = –0.86, 95%CI: –1.67 to –0.05, p = 0.04) and zeaxanthin (SMD = –0.59; 95%CI: –1.12 to –0.06, p = 0.03) in patients with AD versus cognitively intact controls, while α-carotene (SMD = 0.21, 95%CI: –0.68 to 0.26, p = 0.39), β-carotene (SMD = 0.04, 95%CI: –0.57 to 0.65, p = 0.9), lycopene (SMD = –0.12, 95%CI: –0.96 to 0.72, p = 0.78), and β-cryptoxanthin (SMD = –0.09, 95%CI: –0.83 to 0.65, p = 0.81) did not achieve significant differences. Conclusion: Of six major members of carotenoids, only lutein and zeaxanthin concentrations in plasma/serum were inversely related to the risk of AD. More high-quality longitudinal studies are needed to verify these findings.


Sign in / Sign up

Export Citation Format

Share Document