Surface-Chemistry Control To Silence Gene Expression inDrosophila Schneider 2 Cells through RNA Interference

2007 ◽  
Vol 46 (21) ◽  
pp. 3881-3884 ◽  
Author(s):  
Eugene W. L. Chan ◽  
Muhammad N. Yousaf
2019 ◽  
Vol 73 (5) ◽  
pp. 356-361 ◽  
Author(s):  
Emmanuelle Maciel ◽  
Isabelle M. Mansuy

MicroRNAs (miRNAs) are small non-coding RNAs able to silence gene expression by RNA interference. They are present in cells but many are contained in extracellular vesicles (EVs) that can be released by cells in the circulation. Circulating EVs can encounter other cells in the body and deliver their miRNA cargo. This process enables long-range communication between different cells and has been proposed to play important physiological roles. One of these roles that remains less well studied is in the reproductive system. In ovaries and testes, constant communication between somatic cells and developing germ cells is necessary for their maturation and EVs have been proposed to contribute to this communication. EVs might also enable external factors derived from environmental exposure to reach gametes and keep a trace of exposure for the offspring.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 701
Author(s):  
Tatiana S. Golubeva ◽  
Viktoria A. Cherenko ◽  
Konstantin E. Orishchenko

Selective regulation of gene expression by means of RNA interference has revolutionized molecular biology. This approach is not only used in fundamental studies on the roles of particular genes in the functioning of various organisms, but also possesses practical applications. A variety of methods are being developed based on gene silencing using dsRNA—for protecting agricultural plants from various pathogens, controlling insect reproduction, and therapeutic techniques related to the oncological disease treatment. One of the main problems in this research area is the successful delivery of exogenous dsRNA into cells, as this can be greatly affected by the localization or origin of tumor. This overview is dedicated to describing the latest advances in the development of various transport agents for the delivery of dsRNA fragments for gene silencing, with an emphasis on cancer treatment.


2017 ◽  
Vol 8 (7) ◽  
pp. 4973-4977 ◽  
Author(s):  
Kai Zhang ◽  
Xue-Jiao Yang ◽  
Wei Zhao ◽  
Ming-Chen Xu ◽  
Jing-Juan Xu ◽  
...  

A versatile strategy is reported which permits gene regulation and imaging in living cells via an RNA interference antagonistic probe.


Parasitology ◽  
2011 ◽  
Vol 139 (5) ◽  
pp. 651-668 ◽  
Author(s):  
S. BECKMANN ◽  
C. G. GREVELDING

SUMMARYIn parasitological research, significant progress has been made with respect to genomics and transcriptomics but transgenic systems for functional gene analyses are mainly restricted to the protozoan field. Gene insertion and knockout strategies can be applied to parasitic protozoa as well as gene silencing by RNA interference (RNAi). By contrast, research on parasitic helminthes still lags behind. Along with the major advances in genome and transcriptome analyses e.g. for schistosomes, methods for the functional characterization of genes of interest are still in their initial phase and have to be elaborated now, at the beginning of the post-genomic era. In this review we will summarize attempts made in the last decade regarding the establishment of protocols to transiently and stably transform or transfect schistosomes. Besides approaches using particle bombardment, electroporation or virus-based infection strateies to introduce DNA constructs into adult and larval schistosome stages to express reporter genes, first approaches have also been made in establishing protocols based on soaking, lipofection, and/or electroporation for RNA interference to silence gene activity. Although in these cases remarkable progress can be seen, the schistosome community eagerly awaits major breakthroughs especially with respect to stable transformation, but also for silencing or knock-down strategies for every schistosome gene of interest.


2018 ◽  
Vol 5 (8) ◽  
pp. 180458 ◽  
Author(s):  
Eva Jiménez-Guri ◽  
Karl R. Wotton ◽  
Johannes Jaeger

Gap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A–P) axis of the blastoderm embryo. While gap domains cover the entire length of the A–P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata , which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less ( tal ) in C. albipunctata . The homologue of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt ) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Ca-tll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata .


Sign in / Sign up

Export Citation Format

Share Document