scholarly journals 368. Differential Sensitivity of Normal and CML-Derived CD34+Cells to Inhibition of SHP2, Gab2 and Stat5 Gene Expression by RNA Interference (RNAi)

2005 ◽  
Vol 11 ◽  
pp. S143-S144
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2778-2778
Author(s):  
Michaela Scherr ◽  
Karin Battmer ◽  
Anuhar Chaturvedi ◽  
Beate Schultheis ◽  
Arnold Ganser ◽  
...  

Abstract RNA interference (RNAi) has rapidly evolved into an efficient tool for functional genomics in a variety of organisms. Stable expression of shRNA (short hairpin RNA) driven by pol III promoters upon retro- or lentiviral gene transfer can induce long-term gene silencing in mammalian cells, including human hematopoietic cells. We recently demonstrated that lentivirus mediated anti bcr-abl RNAi can specifically silence bcr-abl gene expression, inhibit oncogene driven cell proliferation, and eradicate leukemic cells depending on the dose of lentivirus-mediated shRNA expression (Scherr et al. Gene Therapy 2004). Since effective depletion requires a threshold of lentiviral integrations into target cell genomes, the risk of insertional mutagenesis may limit the therapeutic value of this approach. We therefore applied lentivirus-mediated RNAi for functional genomics in purified primary normal and CD34+ cells from chronic phase CML patients harvested at initial diagnosis. Several SHP-2 shRNAs were generated according to established rules and were functionally evaluated using a bicistronic reporter system as described earlier. Effective shRNA expression cassettes were subsequently cloned into lentiviral plasmids encoding RFP to track lentiviral transduction. Transduction of K562, U937, NB-4 and TF-1 cells with lentiviral supernatants results in a reduction of SHP-2 mRNA and protein by more than 90 %. Interestingly, anti-SHP-2 shRNA induced almost complete depletion of RFP+ cells in all four cell lines, demonstrating that SHP-2 expression is essential for proliferation and survival in these cells. We next transduced normal and CML-derived CD34+ cells with a puritiy of > 95% with control and anti-SHP-2 lentiviruses, and stimulated methylcellulose cultures of the cells with high (GM-CSF: 20 ng/ml; IL-3: 10 ng/ml) or low (GM-CSF: 0.2 ng/ml; IL-3: 0.1 ng/ml) cytokine concentrations. This assay relies on the fact that colony formation of CML-CFU is mediated by both cytokine receptor and bcr-abl signaling. Therefore differential numbers of transduced, i.e. RFP+ colonies under different cytokine stimulations reflect the role of the RNAi-target in normal or malignant CFU. Whereas anti-SHP-2 RNAi did not reduce the proliferation of normal transduced CFU (n=5), proliferation of CFU from CML patients was specifically reduced between 50 to 85 % under low cytokine concentration (n= 9). These data suggest that primary normal cells are more resistant to inhibition of SHP-2 gene expression than leukemic cell lines and CD34+ cells from CML patients and identify SHP-2 as a potential target for anti bcr-abl therapy.


2021 ◽  
pp. 1-10
Author(s):  
Sanaa A. El-Benhawy ◽  
Samia A. Ebeid ◽  
Nadia A. Abd El Moneim ◽  
Rabie R. Abdel Wahed ◽  
Amal R.R. Arab

BACKGROUND: Altered cadherin expression plays a vital role in tumorigenesis, angiogenesis and tumor progression. However, the function of protocadherin 17 (PCDH17) in breast cancer remains unclear. OBJECTIVE: Our target is to explore PCDH17 gene expression in breast carcinoma tissues and its relation to serum angiopoietin-2 (Ang-2), carbonic anhydrase IX (CAIX) and % of circulating CD34+ cells in breast cancer patients (BCPs). METHODS: This study included Fifty female BCPs and 50 healthy females as control group. Cancerous and neighboring normal breast tissues were collected from BCPs as well as blood samples at diagnosis PCDH17 gene expression was evaluated by RT-PCR. Serum Ang-2, CAIX levels were measured by ELISA and % CD34+ cells were assessed by flow cytometry. RESULTS: PCDH17 was downregulated in cancerous breast tissues and its repression was significantly correlated with advanced stage and larger tumor size. Low PCDH17 was significantly correlated with serum Ang-2, % CD34+ cells and serum CAIX levels. Serum CAIX, Ang-2 and % CD34+ cells levels were highly elevated in BCPs and significantly correlated with clinical stage. CONCLUSIONS: PCDH17 downregulation correlated significantly with increased angiogenic and hypoxia biomarkers. These results explore the role of PCDH17 as a tumor suppressor gene inhibiting tumor growth and proliferation.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 701
Author(s):  
Tatiana S. Golubeva ◽  
Viktoria A. Cherenko ◽  
Konstantin E. Orishchenko

Selective regulation of gene expression by means of RNA interference has revolutionized molecular biology. This approach is not only used in fundamental studies on the roles of particular genes in the functioning of various organisms, but also possesses practical applications. A variety of methods are being developed based on gene silencing using dsRNA—for protecting agricultural plants from various pathogens, controlling insect reproduction, and therapeutic techniques related to the oncological disease treatment. One of the main problems in this research area is the successful delivery of exogenous dsRNA into cells, as this can be greatly affected by the localization or origin of tumor. This overview is dedicated to describing the latest advances in the development of various transport agents for the delivery of dsRNA fragments for gene silencing, with an emphasis on cancer treatment.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuanyuan Li ◽  
David M. Umbach ◽  
Juno M. Krahn ◽  
Igor Shats ◽  
Xiaoling Li ◽  
...  

Abstract Background Human cancer cell line profiling and drug sensitivity studies provide valuable information about the therapeutic potential of drugs and their possible mechanisms of action. The goal of those studies is to translate the findings from in vitro studies of cancer cell lines into in vivo therapeutic relevance and, eventually, patients’ care. Tremendous progress has been made. Results In this work, we built predictive models for 453 drugs using data on gene expression and drug sensitivity (IC50) from cancer cell lines. We identified many known drug-gene interactions and uncovered several potentially novel drug-gene associations. Importantly, we further applied these predictive models to ~ 17,000 bulk RNA-seq samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database to predict drug sensitivity for both normal and tumor tissues. We created a web site for users to visualize and download our predicted data (https://manticore.niehs.nih.gov/cancerRxTissue). Using trametinib as an example, we showed that our approach can faithfully recapitulate the known tumor specificity of the drug. Conclusions We demonstrated that our approach can predict drugs that 1) are tumor-type specific; 2) elicit higher sensitivity from tumor compared to corresponding normal tissue; 3) elicit differential sensitivity across breast cancer subtypes. If validated, our prediction could have relevance for preclinical drug testing and in phase I clinical design.


2017 ◽  
Vol 8 (7) ◽  
pp. 4973-4977 ◽  
Author(s):  
Kai Zhang ◽  
Xue-Jiao Yang ◽  
Wei Zhao ◽  
Ming-Chen Xu ◽  
Jing-Juan Xu ◽  
...  

A versatile strategy is reported which permits gene regulation and imaging in living cells via an RNA interference antagonistic probe.


Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4210-4218 ◽  
Author(s):  
Guibin Chen ◽  
Weihua Zeng ◽  
Akira Miyazato ◽  
Eric Billings ◽  
Jaroslaw P. Maciejewski ◽  
...  

Abstract Aneuploidy, especially monosomy 7 and trisomy 8, is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDSs). Patients with monosomy 7 and trisomy 8 have distinctly different clinical courses, responses to therapy, and survival probabilities. To determine disease-specific molecular characteristics, we analyzed the gene expression pattern in purified CD34 hematopoietic progenitor cells obtained from MDS patients with monosomy 7 and trisomy 8 using Affymetrix GeneChips. Two methods were employed: standard hybridization and a small-sample RNA amplification protocol for the limited amounts of RNA available from individual cases; results were comparable between these 2 techniques. Microarray data were confirmed by gene amplification and flow cytometry using individual patient samples. Genes related to hematopoietic progenitor cell proliferation and blood cell function were dysregulated in CD34 cells of both monosomy 7 and trisomy 8 MDS. In trisomy 8, up-regulated genes were primarily involved in immune and inflammatory responses, and down-regulated genes have been implicated in apoptosis inhibition. CD34 cells in monosomy 7 showed up-regulation of genes inducing leukemia transformation and tumorigenesis and apoptosis and down-regulation of genes controlling cell growth and differentiation. These results imply distinct molecular mechanisms for monosomy 7 and trisomy 8 MDS and implicate specific pathogenic pathways.


2018 ◽  
Vol 5 (8) ◽  
pp. 180458 ◽  
Author(s):  
Eva Jiménez-Guri ◽  
Karl R. Wotton ◽  
Johannes Jaeger

Gap genes are involved in segment determination during early development of the vinegar fly Drosophila melanogaster and other dipteran insects (flies, midges and mosquitoes). They are expressed in overlapping domains along the antero-posterior (A–P) axis of the blastoderm embryo. While gap domains cover the entire length of the A–P axis in Drosophila, there is a region in the blastoderm of the moth midge Clogmia albipunctata , which lacks canonical gap gene expression. Is a non-canonical gap gene functioning in this area? Here, we characterize tarsal-less ( tal ) in C. albipunctata . The homologue of tal in the flour beetle Tribolium castaneum (called milles-pattes, mlpt ) is a bona fide gap gene. We find that Ca-tal is expressed in the region previously reported as lacking gap gene expression. Using RNA interference, we study the interaction of Ca-tal with gap genes. We show that Ca-tal is regulated by gap genes, but only has a very subtle effect on tailless (Ca-tll), while not affecting other gap genes at all. Moreover, cuticle phenotypes of Ca-tal depleted embryos do not show any gap phenotype. We conclude that Ca-tal is expressed and regulated like a gap gene, but does not function as a gap gene in C. albipunctata .


Sign in / Sign up

Export Citation Format

Share Document