Thermal aging of plasticized PVC. II. Effect of plasticizer loss on electrical and mechanical properties

1992 ◽  
Vol 45 (12) ◽  
pp. 2097-2103 ◽  
Author(s):  
L. Audouin ◽  
B. Dalle ◽  
G. Metzger ◽  
J. Verdu
Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1666
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabziński ◽  
Krzysztof Frukacz

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn’s mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.


2021 ◽  
Vol 21 (8) ◽  
pp. 4444-4449
Author(s):  
Bongjin Chung ◽  
Shin Sungchul ◽  
Jaeho Shim ◽  
Seongwoo Ryu

Epoxy adhesive was analyzed under long term thermal aging and mechanical properties and chemical degradation were observed by X-ray photoelectron spectroscopy (XPS). Long term thermal exposure of epoxy causes a noticeable reduction in adhesive properties. We developed a predictive model of temperature and time dependent aging. The temperature dependent aging behavior of epoxy adhesive shows good agreement with conventional Arrhenius equations. Using XPS analysis, we also discovered a correlation between chemical degradation and the adhesive properties. Decay of C–C bonding ratio induced chain-scission of epoxy adhesive; increase of total numbers of C–O and C═O induced oxidation of epoxy adhesive during thermal exposure.


2006 ◽  
Vol 324-325 ◽  
pp. 1253-1256
Author(s):  
C.S. Kim ◽  
J.H. Kang ◽  
Jai Won Byeon ◽  
S.I. Kwun

The magnetic coercivity of ferritic 12Cr steel was experimentally studied in order to characterize its microstructures and mechanical properties during isothermal aging. As the aging time increased, the M23C6 carbide coarsened and additional precipitation of Fe2W phase was induced. The width of martensite lath increased to about 0.4μm after 4000 hrs of aging. The coercivity decreased as the number of precipitate decreased and the width of martensite lath increased. The hardness was proportional to the magnetic coercivity. These empirical linear relations suggested that the change in the microstructures and strength of ferritic 12Cr steel during thermal aging could be evaluated by monitoring the magnetic coercivity.


2000 ◽  
Vol 283-287 ◽  
pp. 672-676 ◽  
Author(s):  
Y de Carlan ◽  
A Alamo ◽  
M.H Mathon ◽  
G Geoffroy ◽  
A Castaing

Author(s):  
Pradeep Lall ◽  
Vikas Yadav ◽  
Jeff Suhling ◽  
David Locker

Electronics in automotive underhood and downhole drilling applications may be subjected to sustained operation at high temperature in addition to high strain-rate loads. SAC solders used for second level interconnects have been shown to experience degradation in high strain-rate mechanical properties under sustained exposure to high temperatures. Industry search for solutions for resisting the high-temperature degradation of SAC solders has focused on the addition of dopants to the alloy. In this study, a doped SAC solder called SAC-Q solder have been studied. The high strain rate mechanical properties of SAC-Q solder have been studied under elevated temperatures up to 200°C. Samples with thermal aging at 50°C for up to 6-months have been used for measurements in uniaxial tensile tests. Measurements for SAC-Q have been compared to SAC105 and SAC305 for identical test conditions and sample geometry. Data from the SAC-Q measurements has been fit to the Anand Viscoplasticity model. In order to assess the predictive power of the model, the computed Anand parameters have been used to simulate the uniaxial tensile test and the model predictions compared with experimental data. Model predictions show good correlation with experimental measurements. The presented approach extends the Anand Model to include thermal aging effects.


2018 ◽  
Vol 720 ◽  
pp. 169-175 ◽  
Author(s):  
Ruisi Xing ◽  
Dunji Yu ◽  
Guofu Xie ◽  
Zhihai Yang ◽  
Xuxin Wang ◽  
...  

2010 ◽  
Vol 2010 (1) ◽  
pp. 000314-000318
Author(s):  
Tong Jiang ◽  
Fubin Song ◽  
Chaoran Yang ◽  
S. W. Ricky Lee

The enforcement of environmental legislation is pushing electronic products to take lead-free solder alloys as the substitute of traditional lead-tin solder alloys. Applications of such alloys require a better understanding of their mechanical behaviors. The mechanical properties of the lead-free solders and IMC layers are affected by the thermal aging. The lead-free solder joints on the pads subject to thermal aging test lead to IMC growth and cause corresponding reliability concerns. In this paper, the mechanical properties of the lead-free solders and IMCs were characterized by nanoindentation. Both the Sn-rich phase and Ag3Sn + β-Sn phase in the lead-free solder joint exhibit strain rate depended and aging soften effect. When lead-free solder joints were subject to thermal aging, Young's modulus of the (Cu, Ni)6Sn5 IMC and Cu6Sn5 IMC changed in very small range. While the hardness value decreased with the increasing of the thermal aging time.


Sign in / Sign up

Export Citation Format

Share Document