Effect of the grain size of nanoparticle dye-coated titanium dioxide on the short-circuit current density and open-circuit voltage of an indium tin oxide/titanium dioxide/poly(acrylonitrile)-propylene carbonate-lithium perchlorate/graphite solar cell

2010 ◽  
pp. NA-NA
Author(s):  
Rika ◽  
M. Y. A. Rahman ◽  
M. M. Salleh ◽  
A. A. Umar ◽  
A. Ahmad
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Sungho Woo ◽  
Hong-Kun Lyu ◽  
Yoon Soo Han ◽  
Youngkyoo Kim

Here we report the influences of the sheet resistance (Rsheet) of a hole-collecting electrode (indium tin oxide, ITO) and the conductivity of a hole-collecting buffer layer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) on the device performance of flexible plastic organic photovoltaic (OPV) devices. The series resistance (RS) of OPV devices steeply increases with increasingRsheetof the ITO electrode, which leads to a significant decrease of short-circuit current density (JSC) and fill factor (FF) and power conversion efficiency, while the open-circuit voltage (VOC) was almost constant. By applying high-conductivity PEDOT:PSS, the efficiency of OPV devices with highRsheetvalues of 160 Ω/□ and 510 Ω/□ is greatly improved, by a factor of 3.5 and 6.5, respectively. These results indicate that the conductivities of ITO and PEDOT:PSS will become more important to consider for manufacturing large-area flexible plastic OPV modules.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2020 ◽  
Vol 8 (19) ◽  
pp. 6513-6520 ◽  
Author(s):  
Xingliang Dong ◽  
Qing Guo ◽  
Qi Liu ◽  
Lei Zhu ◽  
Xia Guo ◽  
...  

A new non-fullerene acceptor named NTO-4F is developed. The optimal PSC based on PM6:NTO-4F achieves a PCE of 11.5% with simultaneously high open-circuit voltage of 0.99 V and short-circuit current density of 19.1 mA cm−2.


2006 ◽  
Vol 915 ◽  
Author(s):  
Tayyar Dzhafarov ◽  
Cigdem Oruc Lus ◽  
Sureyya AYDIN ◽  
Emel Cingi

AbstractIn this work we present data on investigation of the current-voltage and capacitance characteristics of Au/PS Schottky type structures in the presence of different hydrogen-containing solutions (glucose, ethanol, methanol, boric acid, sodium tetraborate pentahydrate, sodium borohydride, benzine, KOH). Generation of the open-circuit voltage and short-circuit current density and capacitance up to 0.55 V, 25 mA/cm2 and 1μF respectively on placing of Au/PS structures in these solutions was discovered. This effect is mainly caused by hydrogen component of solutions. The possible mechanism generation of voltage and capacitance in metal/PS sensors hydrogen-containing solutions is suggested. The advantage of metal/PS Schottky type sensors consists in working without applying external electricity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2434
Author(s):  
Zhanwu Wang ◽  
Dongyue Jiang ◽  
Fancong Zeng ◽  
Yingrui Sui

In this study, we prepared Na-doped Cu2ZnSn(S,Se)4 [noted as (Na0.1Cu0.9)2ZnSn(S,Se)4] films on the Mo substrate using a simple and cheap sol–gel method together with the post-annealing technique. The effects of selenization temperature on the properties of Na-doped Cu2ZnSn(S,Se)4 were surveyed. The results indicated that some sulfur atoms in the films were substituted by selenium atoms by increasing the selenization temperature, and all films selenized at different temperatures had a kesterite structure. As the selenization temperature increased from 520 to 560 °C, the band gaps of the film can be tuned from 1.03 to 1 eV. The film with better morphology and opto-electrical properties can be obtained at an intermediate selenization temperature range (e.g., 540 °C), which had the lowest resistivity of 47.7 Ω cm, Hall mobility of 4.63 × 10−1 cm2/Vs, and carrier concentration of 2.93 × 1017 cm−3. Finally, the best power conversion efficiency (PCE) of 4.82% was achieved with an open circuit voltage (Voc) of 338 mV, a short circuit current density (Jsc) of 27.16 mA/cm2 and a fill factor (FF) of 52.59% when the selenization temperature was 540 °C.


2011 ◽  
Vol 1321 ◽  
Author(s):  
Xiaodan Zhang ◽  
Guanghong Wang ◽  
Shengzhi Xu ◽  
Shaozhen Xiong ◽  
Xinhua Geng ◽  
...  

ABSTRACTLight-induced metastability of amorphous/microcrystalline (micromorph) silicon tandem solar cell, in which the microcrystalline bottom cell was deposited in a single-chamber system, has been studied under a white light for more than 1000 hours. Two different light-induced metastable behaviors were observed. The first type was the conventional light-induced degradation, where the open-circuit voltage (Voc), fill factor (FF), and short-circuit current density (Jsc) were degraded, hence the efficiency was degraded as well. This phenomenon was observed mainly in the tandem cells with a bottom cell limited current mismatch. The second type was with a light-induced increase in Voc, which sometimes resulted in an increase in efficiency. The second type of light-induced metastability was observed in the tandem cells with a top cell limited current mismatch. The possible mechanisms for these phenomena are discussed.


2018 ◽  
Vol 20 (47) ◽  
pp. 29866-29875 ◽  
Author(s):  
Wenchao Yang ◽  
Yao Yao ◽  
Pengfei Guo ◽  
Haibin Sun ◽  
Yongsong Luo

Device model calculations show that balanced Jsc and Voc can be achieved at an optimum driving energy of 0.2 eV.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Sayeda Anika Amin ◽  
Md. Tanvir Hasan ◽  
Muhammad Shaffatul Islam

In0.53Ga0.47As/GaAs-based quantum dot intermediate band solar cells (QDIBSCs) have been designed and optimized for the next generation photovoltaic technology. The wave behavior of charge carriers inside the dot and their barrier have been analyzed with different dot sizes and interdot spacing. The device characteristics such as short circuit current density, Jsc, open circuit voltage, Voc, and conversion efficiency, η, have been evaluated. Based on the behavior of electron wave function, it is found that varying the dot spacing leads to a change in the IB width and in the density of states, whereas varying the size of dots leads to a formation of a second IB. For a fixed dot spacing, two ranges of dot sizes vary the number of IBs in In0.53Ga0.47As/GaAs QDIBSC. Smaller dots of a size ranging from 2 nm to 5 nm form a single IB while larger dots of a size ranging from 6 nm to 9 nm can produce 2 IBs. The efficiency of 2 IBs close to 1 IB suggests that formation of multiple IBs can possibly enhance the device efficiency.


Sign in / Sign up

Export Citation Format

Share Document