Functionalization of polypropylene at high temperature under oxidative/inert environment

2011 ◽  
Vol 123 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Deepak B. Akolekar ◽  
Shubhangi Nair ◽  
Santosh Adsul ◽  
Sunil Virkar
Author(s):  
Fu Xiaogang ◽  
Qin Bo ◽  
Ma Haoran ◽  
Zhang Jinquan ◽  
Long Bin

The hydrogen emission of zirconium hydride at high temperature is a challenging issue for many researchers. The hydrogen emission content of zirconium hydride pins should be evaluated to confirm the application feasibility. The comparison of theory analysis and experiment data indicated Richardson’s Law could offer a conservative result for calculating the hydrogen emission content of zirconium hydride pins at high temperature. Furthermore, the methods of preventing hydrogen loss should be developed for the purpose of extending the work temperature or time. The results showed a ZrO2 layer prepared for zirconium hydride could not prevent hydrogen loss after exposure at 923K in an inert environment and ZrO2 transformed into Zr3O gradually due to the opposite movement of hydrogen and oxygen. Finally, a further improvement to prevent hydrogen loss was developed. The zirconium hydride with a ZrO2 layer in the cladding of He+CO2 exhibited no significant reduction of hydrogen content. It is helpful to prevent the hydrogen loss by increasing the oxygen potential on the outside of ZrO2 layer.


2020 ◽  
Vol 22 (39) ◽  
pp. 22609-22616
Author(s):  
Reelika Kaupmees ◽  
Peter Walke ◽  
Lukas Madauß ◽  
Andre Maas ◽  
Erik Pollmann ◽  
...  

Controlled heating experiments in an inert environment have been performed on WS2 monolayers, in order to clarify the conflicting reports on the high-temperature photoluminescent response of 2D TMDs.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Fu Xiaogang ◽  
Qin Bo ◽  
Ma Haoran ◽  
Zhang Jinquan ◽  
Long Bin

The hydrogen emission of zirconium hydride at high temperature is a challenging issue for many researchers. The hydrogen emission content of zirconium hydride pins should be evaluated to confirm the application feasibility. The comparison of theory analysis and experiment data indicated that Richardson's law could offer a conservative result for calculating the hydrogen emission content of zirconium hydride pins at high temperature. Furthermore, the methods of preventing hydrogen loss should be developed for the purpose of extending the work temperature or time. The results showed that a ZrO2 layer prepared for zirconium hydride could not prevent hydrogen loss after exposure at 650 °C in an inert environment and ZrO2 transformed into Zr3O gradually due to the opposite movement of hydrogen and oxygen. Finally, a further improvement to prevent hydrogen loss was developed. The zirconium hydride with a ZrO2 layer in the cladding of He+CO2 exhibited no significant reduction of hydrogen content. It is helpful to prevent the hydrogen loss by increasing the oxygen potential on the outside of ZrO2 layer.


Author(s):  
M.S. Grewal ◽  
S.A. Sastri ◽  
N.J. Grant

Currently there is a great interest in developing nickel base alloys with fine and uniform dispersion of stable oxide particles, for high temperature applications. It is well known that the high temperature strength and stability of an oxide dispersed alloy can be greatly improved by appropriate thermomechanical processing, but the mechanism of this strengthening effect is not well understood. This investigation was undertaken to study the dislocation substructures formed in beryllia dispersed nickel alloys as a function of cold work both with and without intermediate anneals. Two alloys, one Ni-lv/oBeo and other Ni-4.5Mo-30Co-2v/oBeo were investigated. The influence of the substructures produced by Thermo-Mechanical Processing (TMP) on the high temperature creep properties of these alloys was also evaluated.


Author(s):  
B. J. Hockey

Ceramics, such as Al2O3 and SiC have numerous current and potential uses in applications where high temperature strength, hardness, and wear resistance are required often in corrosive environments. These materials are, however, highly anisotropic and brittle, so that their mechanical behavior is often unpredictable. The further development of these materials will require a better understanding of the basic mechanisms controlling deformation, wear, and fracture.The purpose of this talk is to describe applications of TEM to the study of the deformation, wear, and fracture of Al2O3. Similar studies are currently being conducted on SiC and the techniques involved should be applicable to a wide range of hard, brittle materials.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Author(s):  
E. R. Kimmel ◽  
H. L. Anthony ◽  
W. Scheithauer

The strengthening effect at high temperature produced by a dispersed oxide phase in a metal matrix is seemingly dependent on at least two major contributors: oxide particle size and spatial distribution, and stability of the worked microstructure. These two are strongly interrelated. The stability of the microstructure is produced by polygonization of the worked structure forming low angle cell boundaries which become anchored by the dispersed oxide particles. The effect of the particles on strength is therefore twofold, in that they stabilize the worked microstructure and also hinder dislocation motion during loading.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Sign in / Sign up

Export Citation Format

Share Document