scholarly journals PLA/lignocellulosic fiber composites: Particle characteristics, interfacial adhesion, and failure mechanism

2013 ◽  
Vol 131 (4) ◽  
pp. n/a-n/a ◽  
Author(s):  
Gábor Faludi ◽  
Gábor Dora ◽  
Balázs Imre ◽  
Károly Renner ◽  
János Móczó ◽  
...  

2021 ◽  
Vol 98 ◽  
pp. 107189
Author(s):  
András Bartos ◽  
Judit Kócs ◽  
Juliana Anggono ◽  
János Móczó ◽  
Béla Pukánszky




2003 ◽  
Vol 63 (2) ◽  
pp. 161-169 ◽  
Author(s):  
X Colom ◽  
F Carrasco ◽  
P Pagès ◽  
J Cañavate


Author(s):  
Felicia Stan ◽  
Catalin Fetecau

In this paper we investigated the direct-adhesion of Thermoplastic Polyurethane (TPU) to Acrylonitrile-Butadiene-Styrene (ABS). Specimens with an initial pre-crack were obtained by overmolding the TPU onto ABS substrates, at different melt and mold temperatures. The interfacial adhesion between these two dissimilar polymers, represented by the peeling force, was measured directly by using the standard T-peel test at room temperature and at a crosshead speed of 254 mm/min. The peeled fracture surfaces were observed under optical microscope to identify the failure mechanism (adhesive or cohesive). A qualitative correlation was established between the adhesion strength and the injection molding parameters.



Author(s):  
Minshu Zhang ◽  
S. W. Ricky Lee

Interfacial delamination is a long existing problem in the moisture preconditioning process and reflow. The failure is caused by the competition between interfacial strength and hygrothermal stress. Many simulations based on the finite element model have been applied to study the failure mechanism of this phenomenon. However, the difficulty in obtaining material properties of mini-size packages, the lack of experiment investigation of interfacial adhesion and the less-understood moisture analysis will always bring many challenges to simulations. To avoid the above issues, dummy QFN packages were fabricated as the test vehicle for the investigation of the moisture related failure. The major advantage of using dummy packages is that all material properties could be traced and all geometric parameters could be determined without ambiguities. With everything under control, failure modes could be generated within expectation. This would provide a good experiment comparison for future finite element analysis. In this study, several experiment procedures were implemented to establish the relationship between material selection and moisture sensitivity level (MSL) test performance. They were package fabrication, mechanical tests for interfacial adhesion, C-SAM and cross-section inspections. Based on the experimental results, features of the moisture related failure mechanism are presented in this paper.



Author(s):  
Badrinath Veluri ◽  
Henrik Myhre Jensen

This study focuses on the compressive failure mechanism in the form of kinkband formation in fiber composites. Taking into account the non-linearities of the constituents, a constitutive model for unidirectional layered materials has been developed and incorporated as a user material in a commercially available finite element code to study effects of kinkband inclination angle and micro-geometry on kinkband formation. The localization of deformation into a single kinkband is studied. In the post failure regime a state is reached where deformation in the kinkband gets stabilized and the kinkband broadens under steady-state conditions.



RSC Advances ◽  
2016 ◽  
Vol 6 (87) ◽  
pp. 84187-84193 ◽  
Author(s):  
Ying Wang ◽  
Hui Li ◽  
Xiaodan Wang ◽  
Hong Lei ◽  
Jichuan Huo

In order to fabricate epoxy-based glass fiber composites with superior mechanical and thermal properties, starch was chemically modified by E-51 epoxy resin, as a sizing for glass fibers.



Sign in / Sign up

Export Citation Format

Share Document