The effect of change of ionomer/polyol molar ratio on dispersion stability and crystalline structure of films produced from hydrophilic polyurethanes

2016 ◽  
Vol 134 (7) ◽  
Author(s):  
Sandhya Rani Senevirathna ◽  
Shantha Amarasinghe ◽  
Veranja Karunaratne ◽  
Masilamani Koneswaran ◽  
Laleen Karunanayake
2009 ◽  
Vol 89 (3-4) ◽  
pp. 301-316 ◽  
Author(s):  
Omar Mekmene ◽  
Sophie Quillard ◽  
Thierry Rouillon ◽  
Jean-Michel Bouler ◽  
Michel Piot ◽  
...  

2007 ◽  
Vol 72 (9) ◽  
pp. 1284-1294 ◽  
Author(s):  
Bruno Kostura ◽  
František Kovanda ◽  
Marta Valášková ◽  
Juraj Leško

The rehydration of periclase-like Mg-Al mixed oxide obtained by calcination of hydrotalcite- like precursor with a Mg/Al molar ratio of 2 was carried out in KCl-HCl solutions at various pH and constant concentration of Cl-. A buffer equilibrium accompanied by leaching out of Mg2+ cations from the solid was observed during rehydration, when reconstruction of the layered hydrotalcite structure takes place. With increasing HCl concentration in the rehydration solution, the Mg/Al molar ratio in the obtained solid gradually decreased from about 1.5 to 0.3. An anomaly was found, when the increasing concentration of acid resulted in increasing pH of final solution. The XRD measurements showed that the initially formed hydroxide form of hydrotalcite is transformed into randomly interstratified forms of the Mg-Al hydroxide hydrate/Mg-Al chloride hydroxide hydrate, which are accompanied by the release of OH- anions into solution. The crystalline structure of rehydrated product decreased as Mg2+ cations were released into solution, which was accompanied by incorporation of Cl- into the solid.


Author(s):  
A. Santamaria-Echart ◽  
A. Arbelaiz ◽  
A. Saralegi ◽  
B. Fernández-d’Arlas ◽  
A. Eceiza ◽  
...  

Author(s):  
Afzana Anwer ◽  
S. Eilidh Bedford ◽  
Richard J. Spontak ◽  
Alan H. Windle

Random copolyesters composed of wholly aromatic monomers such as p-oxybenzoate (B) and 2,6-oxynaphthoate (N) are known to exhibit liquid crystalline characteristics at elevated temperatures and over a broad composition range. Previous studies employing techniques such as X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) have conclusively proven that these thermotropic copolymers can possess a significant crystalline fraction, depending on molecular characteristics and processing history, despite the fact that the copolymer chains possess random intramolecular sequencing. Consequently, the nature of the crystalline structure that develops when these materials are processed in their mesophases and subsequently annealed has recently received considerable attention. A model that has been consistent with all experimental observations involves the Non-Periodic Layer (NPL) crystallite, which occurs when identical monomer sequences enter into register between adjacent chains. The objective of this work is to employ electron microscopy to identify and characterize these crystallites.


Author(s):  
Barry Bonnell ◽  
Carolyn Larabell ◽  
Douglas Chandler

Eggs of many species including those of echinoderms, amphibians and mammals exhibit an extensive extracellular matrix (ECM) that is important both in the reception of sperm and in providing a block to polyspermy after fertilization.In sea urchin eggs there are two distinctive coats, the vitelline layer which contains glycoprotein sperm receptors and the jelly layer that contains fucose sulfate glycoconjugates which trigger the acrosomal reaction and small peptides which act as chemoattractants for sperm. The vitelline layer (VL), as visualized by quick-freezing, deep-etching, and rotary-shadowing (QFDE-RS), is a fishnet-like structure, anchored to the plasma membrane by short posts. Orbiting above the VL are horizontal filaments which are thought to anchor the thicker jelly layer to the egg. Upon fertilization, the VL elevates and is transformed by cortical granule secretions into the fertilization envelope (FE). The rounded casts of microvilli in the VL are transformed into angular peaks and the envelope becomes coated inside and out with sheets of paracrystalline protein having a quasi-two dimensional crystalline structure.


Author(s):  
P.M. Frederik ◽  
K.N.J. Burger ◽  
M.C.A. Stuart ◽  
A.J. Verkleij

Cellular membranes are often composed of phospholipid mixtures in which one or more components have a tendency to adopt a type II non-bilayer lipid structure such as the inverted hexagonal (H||) phase. The formation of a type II non-bilayer intermediate, the inverted lipid micel is proposed as the initial step in membrane fusion (Verkleij 1984, Siegel, 1986). In the various forms of cellular transport mediated by carrier vesicles (e.g. exocytosis, endocytosis) the regulation of membrane fusion, and hence of inverted lipid micel formation, is of vital importance.We studied the phase behaviour of simple and complex lipid mixtures by cryo-electron microscopy to gain more insight in the ultrastructure of different lipid phases (e.g. Pβ’, Lα, H||) and in the complex membrane structures arising after Lα < - > H|| phase changes (e.g. isotropic, cubic). To prepare hydrated thin films a 700 mesh hexagonal grid (without supporting film) was dipped into and withdrawn from a liposome suspension. The excess fluid was blotted against filter paper and the thin films that form between the bars of the specimen grid were immediately (within 1 second) vitrified by plunging of the carrier grids into ethane cooled to its melting point by liquid nitrogen (Dubochet et al., 1982). Surface active molecules such as phospholipids play an important role in the formation and thinning of these aqueous thin films (Frederik et al., 1989). The formation of two interfacial layers at the air-water interfaces requires transport of surface molecules from the suspension as well as the orientation of these molecules at the interfaces. During the spontaneous thinning of the film the interfaces approach each other, initially driven by capillary forces later by Van der Waals attraction. The process of thinning results in the sorting by size of the suspended material and is also accompanied by a loss of water from the thinner parts of the film. This loss of water may result in the concentration and eventually in partial dehydration of suspended material even if thin films are vitrified within 1 sec after their formation. Film formation and vitrification were initiated at temperatures between 20-60°C by placing die equipment in an incubator provided widi port holes for the necessary manipulations. Unilamellar vesicles were made from dipalmitoyl phosphatidyl choline (DPPC) by an extrusion method and showed a smooth (Lα) or a rippled (PB’.) structure depending on the temperature of the suspensions and the temperature of film formation (50°C resp. 39°C) prior to vitrification. The thermotropic phases of hydrated phospholipids are thus faithfully preserved in vitrified thin films (fig. a,b). Complex structures arose when mixtures of dioleoylphosphatidylethanol-amine (DOPE), dioleoylphosphatidylcholine (DOPC) and cholesterol (molar ratio 3/1/2) are heated and used for thin film formation. The tendency of DOPE to adopt the H|| phase is responsible for the formation of complex structures in this lipid mixture. Isotropic and cubic areas (fig. c,d) having a bilayer structure are found in coexistence with H|| cylinders (fig. e). The formation of interlamellar attachments (ILA’s) as observed in isotropic and cubic structures is also thought to be of importance in biological fusion events. Therefore the study of the fusion activity of influenza B virus with liposomes (DOPE/DOPC/cholesterol/ganglioside in a molar ratio 1/1/2/0.2) was initiated. At neutral pH only adsorption of virus to liposomes was observed whereas 2 minutes after a drop in pH (7.4 - > 5.4) fusion between virus and liposome membranes was demonstrated (fig. f). The micrographs illustrate the exciting potential of cryo-electron microscopy to study lipid-lipid and lipid-protein interactions in hydrated specimens.


1968 ◽  
Vol 20 (03/04) ◽  
pp. 548-554
Author(s):  
J Gajewski ◽  
G Markus

SummaryA method for the standardization of human plasminogen is proposed, based on the stoichiometric interaction between plasminogen and streptokinase, resulting in inhibition of proteolytic activity. Activation of a constant amount of plasminogen with increasing amounts of streptokinase yields linearly decreasing activities, as a function of streptokinase, with a sharp transition to a constant residual level. The point of transition corresponds to complete saturation of plasmin with streptokinase in a 1:1 molar ratio, and is therefore a measure of the amount of plasminogen present initially, in terms of streptokinase equivalents. The equivalence point is independent of the kind of protein substrate used, buffer, pH, length of digestion and, within limits, temperature. The method, therefore, is not subject to the variations commonly encountered in the usual determination based on specific activity measurements.


2020 ◽  
Vol 82 (6) ◽  
pp. 54-63
Author(s):  
M.Ya. Vortman ◽  
◽  
Yu.B. Pysmenna ◽  
A.I. Chuenko ◽  
D.R. Abdulina ◽  
...  

Biocides are widely used in medicine and various industries to protect against a number of harmful microorganisms. Organic quaternary ammonium and guanidine-containing compounds, the biological action of which is based on membrane-toxic properties, are used as bactericidal preparations. The aim of this work was to study the bactericidal and fungicidal activities of the synthesized oligomeric alkylsubstituted guanidinium bromides with different radicals -C3H7, -C7H15, -C10H21, against different isolates of heterotrophic bacteria and microscopic fungi. Methods. The synthesis of alkyl-substituted guanidiniumcontaining oligomers was performed in two stages. In the first stage, alkyl-substituted guanidine was obtained by the reaction of guanidine, previously converted by alkali from the salt form to the base form by the base and alkyl bromides (Alk=-C3H7 (propyl), -C7H15 (heptyl), -C10H21 (decyl)) in methanol at a temperature of 50°C and a molar ratio of 1:1. The second carried out the reaction between aromatic oligoepoxide DER-331 and alkyl-substituted guanidine in methanol at a temperature of 50°C for 2–3 hours and a molar ratio of 1:2. Bacteria were grown on meat-peptone agar for 48 hours at a temperature of 28±2°С. Test cultures of micromycetes were cultured on agar beer wort (6°B), incubated for 14 days in a thermostat at a temperature of 28±2°C. Antimicrobial activity of newly synthesized alkyl-substituted guanidinium-containing oligomers was determined by standard disco-diffusion method (method of disks on agar) and fungicidal activity was determined by the method of holes in agar. Results. Oligomeric alkylsubstituted guanidinium bromides with different radicals composed -C3H7, -C7H15, -C10H21- synthesized by the reaction of guanidine alkyl bromides with aromatic oligoepoxydes. It was found that alkyl-substituted guanidinium-containing oligomers at a concentration of 1–3% inhibited the growth of Escherichia coli 475, Pseudomonas aeruginosa 465, Klebsiella pneumonia 479, Pseudomonas pseudoalcaligenes 109, Staphylococcus aureus 451, E. faecalis 422, Rhodococcus erythropolis 102, Bacillus subtilis 138 and most of the studied micromycetes – Aureobasidium pullulans F-41430, Paecilomyces variotii F-41432, Penicillium funiculosum F-41435, Penicillium ochrochloron F-41431, Scopulariopsis brevicaulis F-41434, Trichoderma viride F-41437, Candida albicans F-41441, Aspergillus flavus F-41442, Aspergillus niger F-41448, Penicillium sp. F-41447. Conclusions. Antimicrobial and fungicidal properties significantly depend on the length of the alkyl radical, with increasing of its length the diameter of the zone of bacterial and micromycetes growth retardation increases.10.15407/microbiolj82.06.054


2000 ◽  
Vol 628 ◽  
Author(s):  
G. González ◽  
P. J. Retuert ◽  
S. Fuentes

ABSTRACTBlending the biopolymer chitosan (CHI) with poly (aminopropilsiloxane) oligomers (pAPS), and poly (ethylene oxide) (PEO) in the presence of lithium perchlorate lead to ion conducting products whose conductivity depends on the composition of the mixture. A ternary phase diagram for mixtures containing 0.2 M LiClO4 shows a zone in which the physical properties of the products - transparent, flexible, mechanically robust films - indicate a high degree of molecular compatibilization of the components. Comparison of these films with binary CHI-pAPS nanocomposites as well as the microscopic aspect, thermal behavior, and X-ray diffraction pattern of the product with the composition PEO/CHI/pAPS/LiClO4 1:0.5:0.6:0.2 molar ratio indicates that these films may be described as a layered nanocomposite. In this composite, lithium species coordinated by PEO and pAPS should be inserted into chitosan layers. Electrochemical impedance spectroscopy measurements indicate the films are pure ionic conductors with a maximal bulk conductivity of 1.7*10-5 Scm-1 at 40 °C and a sample-electrode interface capacitance of about 1.2*10-9 F.


Sign in / Sign up

Export Citation Format

Share Document