Fungicidal and Bactericidal Activity of the Alkyl-Substituted Guanidine-Containing Oligomers

2020 ◽  
Vol 82 (6) ◽  
pp. 54-63
Author(s):  
M.Ya. Vortman ◽  
◽  
Yu.B. Pysmenna ◽  
A.I. Chuenko ◽  
D.R. Abdulina ◽  
...  

Biocides are widely used in medicine and various industries to protect against a number of harmful microorganisms. Organic quaternary ammonium and guanidine-containing compounds, the biological action of which is based on membrane-toxic properties, are used as bactericidal preparations. The aim of this work was to study the bactericidal and fungicidal activities of the synthesized oligomeric alkylsubstituted guanidinium bromides with different radicals -C3H7, -C7H15, -C10H21, against different isolates of heterotrophic bacteria and microscopic fungi. Methods. The synthesis of alkyl-substituted guanidiniumcontaining oligomers was performed in two stages. In the first stage, alkyl-substituted guanidine was obtained by the reaction of guanidine, previously converted by alkali from the salt form to the base form by the base and alkyl bromides (Alk=-C3H7 (propyl), -C7H15 (heptyl), -C10H21 (decyl)) in methanol at a temperature of 50°C and a molar ratio of 1:1. The second carried out the reaction between aromatic oligoepoxide DER-331 and alkyl-substituted guanidine in methanol at a temperature of 50°C for 2–3 hours and a molar ratio of 1:2. Bacteria were grown on meat-peptone agar for 48 hours at a temperature of 28±2°С. Test cultures of micromycetes were cultured on agar beer wort (6°B), incubated for 14 days in a thermostat at a temperature of 28±2°C. Antimicrobial activity of newly synthesized alkyl-substituted guanidinium-containing oligomers was determined by standard disco-diffusion method (method of disks on agar) and fungicidal activity was determined by the method of holes in agar. Results. Oligomeric alkylsubstituted guanidinium bromides with different radicals composed -C3H7, -C7H15, -C10H21- synthesized by the reaction of guanidine alkyl bromides with aromatic oligoepoxydes. It was found that alkyl-substituted guanidinium-containing oligomers at a concentration of 1–3% inhibited the growth of Escherichia coli 475, Pseudomonas aeruginosa 465, Klebsiella pneumonia 479, Pseudomonas pseudoalcaligenes 109, Staphylococcus aureus 451, E. faecalis 422, Rhodococcus erythropolis 102, Bacillus subtilis 138 and most of the studied micromycetes – Aureobasidium pullulans F-41430, Paecilomyces variotii F-41432, Penicillium funiculosum F-41435, Penicillium ochrochloron F-41431, Scopulariopsis brevicaulis F-41434, Trichoderma viride F-41437, Candida albicans F-41441, Aspergillus flavus F-41442, Aspergillus niger F-41448, Penicillium sp. F-41447. Conclusions. Antimicrobial and fungicidal properties significantly depend on the length of the alkyl radical, with increasing of its length the diameter of the zone of bacterial and micromycetes growth retardation increases.10.15407/microbiolj82.06.054

Author(s):  
M.C. Purohit ◽  
Anuj Kandwal ◽  
Reena Purohit ◽  
A.R. Semwal ◽  
Parveen Shama ◽  
...  

Nanoscience and nanotechnology has attracted a lot of attention because of its wide variety of applications. Plant based metallic nanoparticles revolutionized the health sector with targeting nano drug to cure different ailments. Living beings are known to be susceptible to microbial attack followed by multidrug resistance of microorganism put the necessitates for searching more efficient methods of drug delivery or drug production. In the present study, we report the green synthesis of stable hexagonally shaped zinc oxide nanoparticles from leaf extract of Ajuga bracteosa and their antimicrobial efficacy against the selected bacterial (Streptococcus pneumonia, Staphylococcus aureus, Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa) and fungal (Aspergillus fumigates and Trichoderma viride) strains by using agar well diffusion method. Initial colour change and surface-plasmon-resonance (SPR) absorbance bands between 349 nm gave support to the synthesis of zinc oxide nanoparticles. These nanoparticles were further characterized by XRD, EDX, TEM and FTIR techniques. XRD analysis showed that nanoparticles are crystalline in nature. TEM measurements showed that nanoparticles are hexagonally shaped with their average size less than 27 nm. FTIR spectra confirms the presence of phytochemicals which were responsible for reducing, capping and stabilizing the nanoparticles. Antimicrobial results of the synthesized ZnO nanoparticles has indicated the good potential of nanoparticles against all tested microorganism in the present study.


2021 ◽  
Vol 83 (1) ◽  
pp. 49-57
Author(s):  
M.Ya. Vortman ◽  
◽  
Yu.B. Pysmenna ◽  
A.I. Chuenko ◽  
A.V. Rudenko ◽  
...  

There is information in the literature about the salts of polyhexamethylene guanidine (PGMG), which are effective biocidal and sterilizing drugs and disinfectants due to the wide range of their antimicrobial activity against gram-positive and gram-negative bacteria (including Mycobacterium tuberculosis), viruses, and fungi. The aim of this work is to study the bactericidal and fungicidal activity of the synthesized polyetherguanidinium chloride against a number of bacteria and microscopic fungi. Methods. Cultivation of microorganisms. Bacteria were grown on meat-peptone agar for 48 hours at a temperature of 28±2°C. Test cultures of micromycetes were cultured on beer wort agar (6°B), incubated for 14 days in a thermostat at a temperature of 28±2°C. Antimicrobial activity of newly synthesized polyetherguanidinium chloride was determined by standard disco-diffusion method, and fungicidal activity was determined by agar diffusion method. Results. The synthesis of polyetherguanidinium chloride was carried out in two stages. The first stage was the synthesis of a guanidinium-containing oligoether with terminal guanidine moieties by the reaction between an aromatic oligoepoxide and guanidine. The second stage was the synthesis of polyetherguanidinium chloride by the reaction between a guanidinium-containing oligoether with terminal guanidine moieties and oligooxyethylenediamine. The bactericidal and fungicidal activity of polyetherguanidinium chloride against various heterotrophic bacteria and microscopic fungi has been shown. It was found that polyetherguanidinium chloride at concentrations of 1–3% inhibited the growth of gram-negative (Escherichia coli 475, Klebsiella pneumonia 479) and gram-positive (Staphylococcus aureus 451) bacteria. The proposed 1% solution of polyetherguanidinium chloride shows a 1.5 times higher antimicrobial activity than the polymeric disinfectant polyhexamethyleneguanidinium chloride for E. coli 475 and K. pneumoniae 479 bacteria and lower antimicrobial activity for S. aureus 451 bacteria. According to the obtained data, it was noted that polyetherguanidinium chloride at a concentration of 1% had a high fungicidal activity against almost all investigated isolates: Aspergillus versicolor F-41250, Acremoneum humicola F-41252, Acremoneum roseum F-41251, Cladosporium sphaerospermum F-41255, Paecilomyces lilacinus F-41256 and Scopulariopsis candida F-41257. Conclusions. Received polyetherguanidinium chloride at a concentration of 1% showed bactericidal activity against S. aureus 451, E. coli 475, K. pneumoniae 479 and fungicidal effect to all fungi studied by us, and so can be used as a disinfectant for building materials.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
A. Arul Prakash ◽  
S. Balasubramanian ◽  
G. Gunasekaran ◽  
M. Prakash ◽  
P. Senthil Raja

In the present study, effort has been made to find the antimicrobial activity of haemolymph collected from freshwater crab, Paratelphusa hydrodromous. The haemolymph collected was tested for antimicrobial assay by disc diffusion method against clinical pathogens. Five bacterial species, namely, Escherichia coli, Klebsiella pneumonia, Proteus mirabilis, Pseudomonas aeruginosa, Staphylococcus aureus, and five fungal strains, namely and Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Rhizopus sp., and Mucor sp., were selected for the study. The result shows a strong response of haemolymph against the clinical pathogens which confirms the immune mechanism of the freshwater crab.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wattana Panphut ◽  
Tanakwan Budsabun ◽  
Pakkakul Sangsuriya

Long pepper (Piper retrofractum Vahl) is a Thai medicinal herb which has been used as one of the common ingredients in variety of Thai foods. Here, we investigated antimicrobial activities of crude bioactive metabolites extracted from fruits of P. retrofractum against 10 pathogenic organisms (bacteria and yeast) causing opportunistic infections in human or animals including Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC25923, Enterococcus faecalis ATCC2921, Escherichia coli ATCC25922, Klebsiella pneumonia TISTR1843, Pseudomonas aeruginosa ATCC741, Salmonella typhi (clinical isolate), Vibrio parahaemolyticus (XN98 and 5HP), and Candida albicans ATCC90020. The results of disk diffusion test showed that the extract from methanol solvent exhibited greater antibacterial activity than other solvents with inhibition zones ranging from 0.5 to 8.0 mm, respectively. Subsequently, minimal inhibition concentration (MIC) determined by the colorimetric assay confirmed that methanol extracts showed consistent results with disk diffusion method. In summary, in vitro assays suggest that methanol is the best solvent for extraction of bioactive metabolites from P. retrofractum fruits. This crude extract can inhibit the majority of human and animal pathogens. This opens up a potential use of pepper fruits in prevention of food-contaminating microorganisms.


Author(s):  
Iswariya S. ◽  
Uma T. S.

Objective: The present study was designed to identify the bioactive phytochemicals and its antibacterial and in vitro anti-inflammatory potential of aqueous and methanolic seed extract of Citrullus lanatus.Methods: The phytochemical screening of both the aqueous and methanolic seed extract was carried out qualitatively to identify the major Phyto-constituents present in the extracts. The antimicrobial activity of the extracts was evaluated against six pathogenic bacterial strains by agar well diffusion method and the Minimum inhibitory concentration (MIC) was determined by broth dilution method. In vitro anti-inflammatory activity of C. lanatus seed extracts was evaluated by using human red blood cell (HRBC) membrane stabilization and inhibition of albumin denaturation method.Results: The results of the study indicated that both the extracts of the seed having antimicrobial activity, while the methanolic extract showed more significant activity against the tested organism than aqueous extract. Methanol extract had the lowest MIC of 1.562 mg/ml against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa and Bacillus subtilis, whereas in aqueous extract was highly sensitive to Bacillus subtilis, E. coli and Klebsiella pneumonia with MIC of 3.125 and 6.25 mg/ml, respectively. Methanolic extracts exerted comparative higher anti-inflammatory activity than aqueous extract.Conclusion: Present study provides a firm evidence to support that the synergistic effect of C. lanatus seed extracts having potent anti-inflammatory and antimicrobial property, which might serve as an effective drug for various microbial infections and inflammatory disorders.


Author(s):  
Sandhiya G ◽  
Ahmed Fauzia

Bovine mastitis is the common disease of mammary glands of dairy cows, caused by pathogenic bacteria, such as Staphylococcus aureus, Enterococccus faecium, Escherichia coli, Klebsiella pneumonia, Bacillus etc. The disease severely impacts the quality of milk and associated milk products. Three different bacterial species Staphylococcus, Bacillus and Klebsiella were isolated, identified and later treated with the seed extract of Vernonia anthelmentica. Well diffusion method was used to test the antibacterial effect of ethanol seed extract of Vernonia anthelmentica. Results showed that Vernonia anthelmentica was most effective against Staphylococcus compared to other two bacterial species. Phytochemical analysis of Vernonia anthelmentica revealed the presence of tannins, saponins, terpenoids etc. Present study suggests that seeds of Vernonia anthelmentica can be an effective antibacterial against bovine mastitis, which might be due to thepresence of tannins, and terpenoids in the extract.


Author(s):  
Pratibha ◽  
Nesari Tanuja ◽  
Ghildiyal Shivani ◽  
Vandhana

The emergence of antibiotic resistance and the evolution of new strains of disease causing agents, are of highly concern to the global health community. Plants are potential source of antimicrobial agents. They have been used traditionally for prevention of infections caused by micro-organisms. Description of Krimighana herbs enumerated in Ayurveda classics is suggestive towards the importance of this group of medicine. Jambu (Syzygium cumini (L.) Skeels) is a member of Myrtaceae family. In Raja Nighantu it is mentioned that plant Jambu is having Kriminashaka property. It has been widely used medicine in the prevention of various ailments like cough, Dysentary, Diabetes, inflammation and ringworm. It is well established fact that geographical variations effects the potential and activity of medicinal herbs. Hence, the present study was undertaken to investigate Syzygium cumini procured from different geographical locations including Delhi, Rajasthan and Maharashtra for their potential activity against human infections caused by pathogens. Method The aqueous extract of Syzygium cumini of all the three areas was prepared. The activity of the plant extract was evaluated against nine bacterial pathogens and one fungal strain, which include Staphyllococcus aureus, Streptococcus pyogenes, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumonia and Candida albicans. The activity was carried out using Disk diffusion method. Result and Conclusion: All samples of Syzygium cumini showed potential antimicrobial activity against four pathogens including Staphyllococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Candida albicans. MIC was also evaluated against the tested pathogenic strains. The sample from Maharashtra showed MIC i.e. 80µg, 40µg, 80µg against Staphyllococcus aureus, Streptococcus pyogenes and Candida albicans respectively which is less as compare to sample from Rajasthan and Delhi. Region wise sample from Maharashtra showed good ZOI and MIC.


2021 ◽  
Vol 6 (2) ◽  
pp. 1-7
Author(s):  
Eze EM

Background: This study investigated the prevalence of extended spectrum beta-lactamase producing enterobacteriaceae in Illorin metropolis using standard methods. The prevalence of ESBLs is increasingly being reported worldwide, and it varies according to geographic location and is directly linked to the use and misuse of antibiotics extended spectrum lactamases (ESBLs) are a major challenge in hospitalized patients worldwide and cause epidemic outbreaks in health care facilities, spreading in the community leading to various infections. Objectives: Screen for the extended spectrum β-lactamase producing Enterobacteriaceae and also determine the prevalence of ESBL producing Enterobacteriaceae in relation to gender, age and sample source. Methods: One hundred and sixty eight samples collected from routine clinical specimen such as high vagina swabs, urine, urethra swabs and wound swabs and sputum from October to December 2018 were studied. Fifty two enterobacteriaceae were isolated using spread plate method on macConkey and Cystein lactose electrolyte deficient media. The organisms were Klebsiella pneumoniae, Escherichia coli, Salmonella sp, Shigella sp, and Proteus sp. The isolates were subjected to antibiotic susceptibility testing using modified Kirby-Bauer standardized disc diffusion method. The antibiotics used were ceftazidine (30ug), cefuroxime (30ug), gentamicin (10ug), ciprofloxacin (5ug), ofloxacin 5ug, amoxicillin/clavulanate 30ug, nitrofurantoin 30ug and ampicillin 10ug. Ceftazidime showed a susceptibility percentage of 84.6%,, cefuroxime 61.5%, gentamicin 71.2% ciprofloxacin 46.2%, ofloxacin 51.9%, augmentin 61.5%, nitrofurantoin 71.2% and ampicillin, 44.2% with a significant difference (P< 0.05).Extended spectrum beta-lactamase ESBL, production by clinical and laboratory standards institute (CLSI) methods showed that 15(28.9%) of isolates belonging to the genera Escherichia, Klebsiella and Proteus expressed ESBL production. The order of ESBL production by the isolates were Escherichia coli 9 (17.3%), Klebsiella pneumonia 5(9.3%) and Proteus 1(1.9%). Thus, attention needs to be given by health care personnel’s to ESBL producing organisms in order to reduce the spread.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Muhammad Evy Prastiyanto ◽  
Prayoda Deri Tama ◽  
Ninda Ananda ◽  
Wildiani Wilson ◽  
Ana Hidayati Mukaromah

Objective. This study was aimed to evaluate the antibacterial activity of the latex of three species members of Jatropha (J. curcas, J. gossypilofia Linn., and J. multifida) against methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase- (ESBL-) producing Escherichia coli and ESBL-producing Klebsiella pneumonia, carbapenemase-resistant Enterobacteriaceae (CRE)-E. coli, K. pneumoniae-carbapenemase (KPC), and carbapenemase-resistant Pseudomonas aeruginosa (CRPA). Method. The antibacterial activities were calculated based on the inhibition zones using the Mueller–Hinton agar diffusion method, minimum inhibitory concentration (MIC) using Mueller–Hinton broth in a microdilution method, and minimum bactericidal concentration (MBC) using blood agar plate. Results. The latex of Jatropha showed antibacterial activities against the MRSA and CRPA. All latex of Jatropha appeared to have the antibacterial activities against MRSA and CRPA in the diffusion method (20.4–23.7 mm and 12–15 mm), MIC (0.19–6.25%, and 25%), and MBC (0.39–12.5% and 50%). Phytochemical screening of latex indicated the presence of flavonoids. Conclusions. The latex of J. curcas, J. gossypilofia Linn., and J. multifida has the potential to be developed as antibacterial agents, especially against MRSA and CRPA strain, but further in vivo research and discovery of the mode of its action are required to shed the light on the effects.


Dose-Response ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 155932582095679
Author(s):  
Muhammad Amjad Chishti ◽  
Ejaz Mohi-Ud-Din ◽  
Shahbaz Ahmad Zakki ◽  
Muhammad Rahil Aslam ◽  
Sheraz Siddiqui ◽  
...  

The present study was conducted to evaluate the antibacterial activity, in vitro and in vivo cytotoxicity, cell viability and safety of Eastern Medicine coded medicinal formulation Eczegone comprising extracts of Azadirachta indica (Azin) , Fumaria indica (Fuin) , Sphaeranthus indicus (Spin) and Lawsonia inermis (Lain). This work also evaluated antibacterial activity of Eczegone formulation having above mentioned plants ethanolic extracts against different bacteria’s by disk diffusion method. In vitro toxicity of Eczegone formulation was investigated by using human skin keratinocytes HaCaT cell line, crystal violet stained cells, and methyl tetrazolium cytotoxicity (MTT) assay. In vivo acute oral and dermal cytotoxicity was determined by using Swiss albino mice and albino rabbits, respectively. The Eczegone formulation showed antibacterial activity against 3 gram negative bacteria including Escherichia coli, Klebsiella pneumonia, Proteus vulgaris and a gram positive Staphylococcus aureus. We didn’t observe any toxic effect of Eczegone formulation on the skin keratinocytes. Furthermore, the Ezcegone formulation was non-irritant according to draize score (OECD TG404, 2002). After rigorous safety evaluation by in vitro and in vivo acute oral and dermal toxicity analysis, we concluded that Eczegone formualtion possessses antibacterial effects and is safe, non-toxic, non-irritant, and the drug would be subjected for further biochemical and clinical studies.


Sign in / Sign up

Export Citation Format

Share Document