DMBT1 suppresses cell proliferation, migration and invasion in ovarian cancer and enhances sensitivity to cisplatin through galectin‐3/ PI3k /Akt pathway

2020 ◽  
Vol 38 (6) ◽  
pp. 801-809 ◽  
Author(s):  
Nan Ma ◽  
Yuqing Zhao
2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.


2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.


2021 ◽  
Vol 7 (5) ◽  
pp. 3997-4004
Author(s):  
Zhibo Zou ◽  
Lin Peng

Objective: This study aimed to probe into the effect of LncRNA SNHG14 on ovarian cancer progression by regulating miR-206.Methods: Fifty-seven ovarian cancer (OC) patients who were treated in our hospital from December 2017 to December 2019 were collected as the research objects. During the operation, OC tissues and paracancerous tissues of patients were collected, and the effect of SNHG14 on OC tumor growth in nude mice was detected, and SNHG14 inhibitor was transfected into OC cells. The relative expression of SNHG14 in tissues and cells was detected by qRT-PCR, cell proliferation was testedvia CCK8, migration and invasion were detected through Transwell, apoptosis was assessedvia flow cytometry, and the targeted relationship between SNHG14 and miR-206 was detected by dual luciferase reporter gene.Results: SNHG14 is highly expressed in OC tissues, cells and nude mice. Down-regulating it can inhibit the biological ability of OC cells and inhibit the growth of nude mice tumors. It can directly target miR-206 to regulate CCND1 expression and promote OC progression.Conclusion: LncRNA SNHG14 can act as miR-206 sponge to regulate CCND1 expression downstream of miR-206 and promote OC progression.


2018 ◽  
Vol 50 (3) ◽  
pp. 810-822 ◽  
Author(s):  
Nan Sheng ◽  
Yun-Zhao Xu ◽  
Qing-Hua Xi ◽  
Hai-Yan Jiang ◽  
Chen-Yi Wang ◽  
...  

Background/Aims: This study aimed to investigate the expression and prognostic value of kinesin family member 2A (KIF2A) and the suppression effects of microRNA-206 (miR-206) on KIF2A in ovarian cancer. Methods: Ovarian cancer tissues from patients and ovarian cancer cell lines (A2780 and SKOV3) were used in this study. miR-206 mimics and control were transiently transfected into cells. RT-qPCR was performed to detect KIF2A mRNA and miR-206 expression levels, Western blot was performed to detect KIF2A protein levels, Dual-Luciferase Reporter Assay was used to examine the inhibition effects of miR-206 on KIF2A mRNA, immunohistochemical staining was used to examine the expression of KIF2A in tissue sections. CCK-8, transwell and Annexin-V-FITC/Propidium Iodide staining with flow cytometry were used to detect the cell proliferation, migration/invasion, and apoptosis respectively. Results: Our study explored the expression profiles of KIF2A and miR-206 in the patients with ovarian cancer. We found that overexpression of KIF2A was associated with a poor prognosis in ovarian cancer. We also found that KIF2A mRNA contains two target sites for miR-206 binding and confirmed that miR-206 directly suppresses KIF2A; inhibits ovarian cancer cell proliferation, migration, and invasion; and induces apoptosis. Conclusion: The results suggest KIF2A could serve a valuable prognostic indicator in ovarian cancer and provide a rationale for treatment of ovarian cancer by targeting KIF2A via miR-206.


2019 ◽  
Author(s):  
Zhongquan Zhao ◽  
Jiechao Chen ◽  
Dezhi Xia

Abstract Background: Osteosarcoma (OS) is a primary malignant tumor with high mortality and disability rate in childhood and adolescent, whereas the influence of LncRNA00173 (NCRNA00173) on pediatric OS progression is not obvious yet. Therefore, this study aimed to investigate the expression of NCRNA00173 in pediatric OS and its effect on OS progression. Methods: In our study, qRT-PCR was adopted to test the NCRNA00173 expression in 40 pairs of pediatric OS tissues and OS cell lines. Kaplan-Meier method and Cox proportional hazard model were performed to analyze the prognosis of pediatric OS patients. The cell proliferation, apoptosis, migration and invasion of U2OS and HOS cells were test by MTT assay, flow cytometry, wound-healing, and transwell assay, respectively. The protein expression levels of PI3K/Akt pathway were measured by western blot. In addition, tumor growth in nude mice was also detected. Results: The expression of NCRNA00173 was down-regulated and relevant with poor prognosis in pediatric OS. Overexpression of NCRNA00713 inhibited cell proliferation, migration and invasion, as well as accelerated cell apoptosis in U2OS and HOS cells. Overexpression of NCRNA00713 suppressed tumor growth in nude mice. The protein expression of p-PI3K and p-Akt were remarkedly decreased in U2OS and HOS cells after transfection with NCRNA00173. In addition, 740 Y-P (PI3K/Akt pathway activator) eliminated the impact of NCRNA00173 in HOS. Conclusions: NCRNA00173 was down-regulated in pediatric OS and suppressed metastasis of OS cells by regulating PI3k/Akt pathway.


2016 ◽  
Vol 36 (2) ◽  
pp. 918-928 ◽  
Author(s):  
Long Li ◽  
Zhaoning Duan ◽  
Jihui Yu ◽  
Hong-Xing Dang

Sign in / Sign up

Export Citation Format

Share Document