scholarly journals MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma

2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jun Rao ◽  
Jinjin Fu ◽  
Chuchen Meng ◽  
Jin Huang ◽  
Xiangrong Qin ◽  
...  

The function and possible mechanism of lncRNA Small Nucleolar RNA Host Gene 3 (SNHG3) in GC have not been fully studied. The aim of our study was to investigate the role of SNHG3 in the proliferation, migration, and invasion of GC cell lines. The expressions of SNHG3, miR-326, and TWIST in GC9811-P GC cell lines were detected by RT-qPCR. Western blotting was performed to detect the protein levels of TWIST and EMT-related genes. Luciferase reporter gene analysis and RNA immunoprecipitation (RIP) analysis confirmed the interaction between lncRNA SNHG3, miR-326, and TWIST. CCK-8 and Transwell assays were performed to detect cell proliferation, invasion, and migration abilities. The results showed that lncRNA SNHG3 and TWIST were highly expressed in GC cell lines, while miR-326 was expressed to a low degree. Moreover, lncRNA SNHG3 knockdown or miR-326 overexpression significantly inhibited cell proliferation, migration, and invasion of GC cell lines. In addition, TWIST overexpression can reverse the inhibition of lncRNA SNHG3 knockdown or miR-326 overexpression on cell proliferation, migration, and invasion. In conclusion, lncRNA SNHG3 may promote GC progression through the miR-326/TWIST axis, which may provide a new diagnostic and prognostic biomarker for GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lanlan Xi ◽  
Quanlin Liu ◽  
Wei Zhang ◽  
Linshan Luo ◽  
Jingfeng Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play vital roles in colorectal cancer (CRC). However, only a few circRNAs have been experimentally validated and functionally described. In this research, we aimed to reveal the functional mechanism of circCSPP1 in CRC. Methods 36 DOX sensitive and 36 resistant CRC cases participated in this study. The expression of circCSPP1, miR-944 and FZD7 were detected by quantitative real time polymerase chain reaction (qRT-PCR) and the protein levels of FZD7, MRP1, P-gp and LRP were detected by western blot. Cell proliferation, migration, invasion, and apoptosis were assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, transwell assay, or flow cytometry analysis, respectively. The interaction between miR-944 and circCSPP1 or frizzled-7 (FZD7) was predicted by Starbase 3.0 and verified by the dual luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull down assay. Xenograft tumor assay was performed to examine the effect of circCSPP1 on tumor growth in vivo. Results The expression of circCSPP1 and FZD7 was upregulated while miR-944 expression was downregulated in doxorubicin (DOX)-resistant CRC tissues and cells. CircCSPP1 knockdown significantly downregulated enhanced doxorubicin sensitivity, suppressed proliferation, migration, invasion, and induced apoptosis in DOX-resistant CRC cells. Interestingly, we found that circCSPP1 directly downregulated miR-944 expression and miR-944 decreased FZD7 level through targeting to 3′ untranslated region (UTR) of FZD7. Furthermore, circCSPP1 mediated DOX-resistant CRC cell progression and doxorubicin sensitivity by regulating miR-944/FZD7 axis. Besides, circCSPP1 downregulation dramatically repressed CRC tumor growth in vivo. Conclusion Our data indicated that circCSPP1 knockdown inhibited DOX-resistant CRC cell growth and enhanced doxorubicin sensitivity by miR-944/FZD7 axis, providing a potential target for CRC therapy.


2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi Hu ◽  
Yan Ma ◽  
Jie Liu ◽  
Yanlin Cai ◽  
Mengmeng Zhang ◽  
...  

Abstract Background Cervical cancer (CC), causing significant morbidity and mortality worldwide, is one of the most common gynecological malignancies in women. SFN has been reported as a potential prognostic marker with apparent high expression in tumors. Nevertheless, the function mechanism of SFN is not clear yet in CC. Methods The relative expressions of RNAs were detected by real-time quantitative PCR (RT-qPCR). Colony formation assay, EdU stained assay and CCK-8 assay were to check cell proliferation ability in CC. Flow cytometry and apoptosis related proteins analysis were used to measure cells apoptosis capacity. Luciferase reporter assay and RNA pull down assay were to verify the molecular mechanism. Results SFN was highly expressed in CC tissues and CC cell lines compared with normal tissues and normal cell line. After interfering SFN, cell proliferation, migration and invasion ability was inhibited as well as cell apoptosis ability was promoted. In subsequence, miR-383-5p exhibited conspicuous low expression in CC tissues. And miR-383-5p was found to bind to SFN and have anti-cancerous effects in CC. Moreover, LINC01128 displayed remarkable high expression in CC tissues. Besides, LINC01128 shortage could reduce the expression of SFN at mRNA and protein levels. And the affinity between LINC01128 and miR-383-5p was verified. In the end, it was proved that LINC01128 could enhance cell proliferation, migration and invasion as well as inhibit cell apoptosis by binding with miR-383-5p and upregulating SFN. Conclusion LINC01128 expedited cells cellular process in CC by binding with miR-383-5p to release SFN. Graphical Abstract


2020 ◽  
Author(s):  
Peng Shen ◽  
Lili Qu ◽  
Jingjing Wang ◽  
Quchen Ding ◽  
Chuanwen Zhou ◽  
...  

Abstract Background Long intergenic non-protein coding RNA 342 (LINC00342) has been identified as a novel oncogene, however, the functional role of LINC00342 in colorectal cancer (CRC) remained unclear. Methods The expression of LINC00342 was detected by real-time PCR. Cell proliferation, migration and invasion and xenograft model were examined to analyze the biological functions of LINC00342 in vitro and in vivo. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target interactions between LINC00342, miR-19a-3p and aminopeptidase like 1 (NPEPL1). Results LINC00342 was highly expressed in CRC. Downregulation of LINC00342 inhibited cell proliferation and metastasis of CRC cells. Moreover, knocking down LINC00342 could weaken the tumor growth in vivo. Mechanistic investigation revealed that LINC00342 may sponge miR-19a-3p to regulate NPEPL1 expression. Further investigation indicated that the oncogenesis facilitated by LINC00342 was inhibited by NPEPL1 depletion.Conclusion LINC00342 promoted CRC progression by competitively binding miR-19a-3p with NPEPL1.


2020 ◽  
Author(s):  
Wu Zhiyong ◽  
Luo Jie ◽  
Huang Tengyue ◽  
Yi Renhui ◽  
Ding Shengfeng ◽  
...  

Abstract Background: miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the tumor progression of human glioma.Methods: miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) , Transwell chamber, Boyden chamber, and western blot analyses, as well as in vivo tumorigenesis in nude mice. The relationships among miR-4310, SP1, and phosphatase and tensin homolog (PTEN) were explored by chromatin immunoprecipitation (ChIP), agarose gel electrophoresis, electrophoresis mobility shift (EMSA), and dual luciferase reporter gene assays. Results: miR-4310 expression was upregulated in glioma tissues compared to NB. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo . Inhibition of miR-4310 was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion: miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway meanwhile the expression of miR-4310 is induced by SP1.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Jia-Qing Zhang ◽  
Xian-Wei Wang ◽  
Jun-Feng Chen ◽  
Qiao-Ling Ren ◽  
Jing Wang ◽  
...  

Oxidative stress is a causal factor and key promoter of all kinds of reproductive disorders related to granulosa cell (GC) apoptosis that acts by dysregulating the expression of related genes. Various studies have suggested that grape seed procyanidin B2 (GSPB2) may protect GCs from oxidative injury, though the underlying mechanisms are not fully understood. Therefore, whether the beneficial effects of GSPB2 are associated with microRNAs, which have been suggested to play a critical role in GC apoptosis by regulating the expression of protein-coding genes, was investigated in this study. The results showed that GSPB2 treatment protected GCs from a H2O2-induced apoptosis, as detected by an MTT assay and TUNEL staining, and increased let-7a expression in GCs. Furthermore, let-7a overexpression markedly increased cell viability and inhibited H2O2-induced GC apoptosis. Furthermore, the overexpression of let-7a reduced the upregulation of Fas expression in H2O2-treated GCs at the mRNA and protein levels. Dual-luciferase reporter assay results indicated that let-7a directly targets the Fas 3′-UTR. Furthermore, the overexpression of let-7a enhanced the protective effects of GSPB2 against GC apoptosis induced by H2O2. These results indicate that GSPB2 inhibits H2O2-induced apoptosis of GCs, possibly through the upregulation of let-7a.


2018 ◽  
Vol 51 (4) ◽  
pp. 1763-1777 ◽  
Author(s):  
Miaomei Yu ◽  
Yun Xu ◽  
Lili Pan ◽  
Yuehua Feng ◽  
Kaiming Luo ◽  
...  

Background/Aims: microRNAs (miRNAs) are known to act as oncogenes or tumor suppressors in diverse cancers. Although miR-10b is an oncogene implicated in many tumors, its role in cervical cancer (CC) remains largely unclear. Here, we investigated the function and underlying mechanisms of miR-10b in human CC. Methods: Quantitative RT-PCR was used to measure miR-10b expression in CC and normal tissues, and its association with clinicopathologic features was analyzed. Methylation of CpG sites in the miR-10b promoter was analyzed by methylation sequencing. Cell proliferation, apoptosis, migration, and invasion assays were used to elucidate the biological effects of miR-10b and expression of the target gene was assayed with Western blot. Results: miR-10b was downregulated in CC tissues compared with normal tissues, and less miR-10b expression was associated with larger tumors, vascular invasion and HPV-type 16 positivity. miR-10b expression decreased in HeLa (HPV18-positive) and SiHa (HPV16-positive) cells compared with C-33A (HPV-negative), but increased after treatment with 5-Aza-CdR. Methylation ratio of site -797 in the miR-10b promoter in C-33A was lower than that in HeLa and SiHa. Further analysis indicates that site -797 is located within a transcription factor AP-2A (TFAP2A) binding element. Functionally, overexpression of miR-10b in HeLa and SiHa suppressed cell proliferation, migration and invasion, and induced apoptosis and miR-10b downregulation had opposite effects. Mechanistically, T-cell lymphoma invasion and metastasis 1 (Tiam1) was identified as a direct and functional target of miR-10b. Conclusion: miR-10b acts as a tumor suppressor in CC by suppressing oncogenic Tiam1, and its expression may be downregulated through methylation of TFAP2A binding element by HPV.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yongjie Liu ◽  
Naiquan Duan ◽  
Shibo Duan

Background. MiR-29a is known as a repressor of human cancer. However, its relevance in glioma proliferation and invasion remains largely unknown. In this study, we aimed to investigate the function and mechanism of miR-29a in glioma tumorigenesis.Methods. The expression of miR-29a was determined by using qRT-PCR. CCK-8, wound healing, and transwell invasion assays were carried out to analyze the effects of miR-29a in glioblastoma cells. qRT-PCR, luciferase reporter, and western blot experiments were done to validate the targeting of TRAF4/Akt pathway by miR-29a. The expression correlation between levels of TRAF4 and miR-29a was analyzed. Regulation of miR-29a expression by enhanced/reduced TRAF4/Akt expression was finally confirmed by qRT-PCR.Results. MiR-29a was decreased in the glioma tissues, especially in those at higher grades. Following its mimic transfection, we validated that miR-29a inhibited cell proliferation, migration, and invasion. Consistently, miR-29a inhibition induced the opposite effects on cell proliferation, migration, and invasion. We confirmed TRAF4 as a direct target of miR-29a, which might mediate the Akt pathway activation. We showed a significantly negative expression correlation between TRAF4 and miR-29a in normal and glioma tissues. Finally we observed an upregulation of miR-29a in TRAF4/Akt activated cells.Conclusion. MiR-29a is critical tumor suppressor for glioma tumorigenesis by forming a negative feedback loop of TRAF4/Akt signaling and represents a potent therapeutic candidate for treating gliomas.


2019 ◽  
Vol 18 ◽  
pp. 153303381985413 ◽  
Author(s):  
Yuan Zhang ◽  
Jiangang Wang ◽  
Wenzhi An ◽  
Chen Chen ◽  
Wencheng Wang ◽  
...  

Purpose: Glioma is identified as a broad category of brain and spinal cord tumors. MiR-32 is important in regulating the genesis of different cancers; however, the underlying mechanisms of miR-32 in glioma still largely unknown. This study aimed to elucidate pathobiological functions of miR-32 in glioma and verify its effect on the regulation of enhancer of zeste homolog 2. Methods: The expression of miR-32 and enhancer of zeste homolog 2 was detected by quantitative real-time polymerase chain reaction and Western blot in glioma tissues and cells. Cell Counting Kit-8 (CCK-8) assay was used to examine the effects of miR-32 on human glioma cells proliferation. Transwell assay was used to examine cell metastasis, respectively. Two bioinformatics analysis software and luciferase reporter assay were chosen to confirm targeting association between miR-32 and enhancer of zeste homolog 2. Results: MiR-32 was downregulated in glioma tissues and cells. Furthermore, enhancer of zeste homolog 2 expression was upregulated and negatively correlated with miR-32 in clinical tissues. Ectopic expression of miR-32 inhibited glioma cell proliferation, migration, and invasion. Enhancer of zeste homolog 2 was identified as direct target gene of miR-32 in glioma. Overexpression of enhancer of zeste homolog 2 ablated the inhibitory effects of miR-32. Conclusion: In summary, our finding suggests that miR-32 acts an important role in inhibiting glioma cell proliferation and metastasis and suppresses the expression of ABCC4 by directly targeting its 3′-untranslated region. The miR-32/enhancer of zeste homolog 2 axis may provide new insights to the treatment for glioma.


Sign in / Sign up

Export Citation Format

Share Document