A small-molecule antagonist of CXCR1 and CXCR2 inhibits cell proliferation, migration and invasion in melanoma via PI3K/AKT pathway

2019 ◽  
Vol 152 (11) ◽  
pp. 425-430 ◽  
Author(s):  
Fu-min Shang ◽  
Jing Li
2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.


2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.


2019 ◽  
Author(s):  
Zhongquan Zhao ◽  
Jiechao Chen ◽  
Dezhi Xia

Abstract Background: Osteosarcoma (OS) is a primary malignant tumor with high mortality and disability rate in childhood and adolescent, whereas the influence of LncRNA00173 (NCRNA00173) on pediatric OS progression is not obvious yet. Therefore, this study aimed to investigate the expression of NCRNA00173 in pediatric OS and its effect on OS progression. Methods: In our study, qRT-PCR was adopted to test the NCRNA00173 expression in 40 pairs of pediatric OS tissues and OS cell lines. Kaplan-Meier method and Cox proportional hazard model were performed to analyze the prognosis of pediatric OS patients. The cell proliferation, apoptosis, migration and invasion of U2OS and HOS cells were test by MTT assay, flow cytometry, wound-healing, and transwell assay, respectively. The protein expression levels of PI3K/Akt pathway were measured by western blot. In addition, tumor growth in nude mice was also detected. Results: The expression of NCRNA00173 was down-regulated and relevant with poor prognosis in pediatric OS. Overexpression of NCRNA00713 inhibited cell proliferation, migration and invasion, as well as accelerated cell apoptosis in U2OS and HOS cells. Overexpression of NCRNA00713 suppressed tumor growth in nude mice. The protein expression of p-PI3K and p-Akt were remarkedly decreased in U2OS and HOS cells after transfection with NCRNA00173. In addition, 740 Y-P (PI3K/Akt pathway activator) eliminated the impact of NCRNA00173 in HOS. Conclusions: NCRNA00173 was down-regulated in pediatric OS and suppressed metastasis of OS cells by regulating PI3k/Akt pathway.


2019 ◽  
Vol 8 (7) ◽  
pp. 3520-3531 ◽  
Author(s):  
Chunhua Ling ◽  
Xueting Wang ◽  
Jianjie Zhu ◽  
Haicheng Tang ◽  
Wenwen Du ◽  
...  

2020 ◽  
Author(s):  
Wu Zhiyong ◽  
Luo Jie ◽  
Huang Tengyue ◽  
Yi Renhui ◽  
Ding Shengfeng ◽  
...  

Abstract Background: miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the tumor progression of human glioma.Methods: miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) , Transwell chamber, Boyden chamber, and western blot analyses, as well as in vivo tumorigenesis in nude mice. The relationships among miR-4310, SP1, and phosphatase and tensin homolog (PTEN) were explored by chromatin immunoprecipitation (ChIP), agarose gel electrophoresis, electrophoresis mobility shift (EMSA), and dual luciferase reporter gene assays. Results: miR-4310 expression was upregulated in glioma tissues compared to NB. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo . Inhibition of miR-4310 was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion: miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway meanwhile the expression of miR-4310 is induced by SP1.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yongjie Liu ◽  
Naiquan Duan ◽  
Shibo Duan

Background. MiR-29a is known as a repressor of human cancer. However, its relevance in glioma proliferation and invasion remains largely unknown. In this study, we aimed to investigate the function and mechanism of miR-29a in glioma tumorigenesis.Methods. The expression of miR-29a was determined by using qRT-PCR. CCK-8, wound healing, and transwell invasion assays were carried out to analyze the effects of miR-29a in glioblastoma cells. qRT-PCR, luciferase reporter, and western blot experiments were done to validate the targeting of TRAF4/Akt pathway by miR-29a. The expression correlation between levels of TRAF4 and miR-29a was analyzed. Regulation of miR-29a expression by enhanced/reduced TRAF4/Akt expression was finally confirmed by qRT-PCR.Results. MiR-29a was decreased in the glioma tissues, especially in those at higher grades. Following its mimic transfection, we validated that miR-29a inhibited cell proliferation, migration, and invasion. Consistently, miR-29a inhibition induced the opposite effects on cell proliferation, migration, and invasion. We confirmed TRAF4 as a direct target of miR-29a, which might mediate the Akt pathway activation. We showed a significantly negative expression correlation between TRAF4 and miR-29a in normal and glioma tissues. Finally we observed an upregulation of miR-29a in TRAF4/Akt activated cells.Conclusion. MiR-29a is critical tumor suppressor for glioma tumorigenesis by forming a negative feedback loop of TRAF4/Akt signaling and represents a potent therapeutic candidate for treating gliomas.


2021 ◽  
Vol 22 (16) ◽  
pp. 8581
Author(s):  
Ginette S. Santiago-Sánchez ◽  
Ricardo Noriega-Rivera ◽  
Eliud Hernández-O’Farrill ◽  
Fatma Valiyeva ◽  
Blanca Quiñones-Diaz ◽  
...  

Inflammatory Breast Cancer (IBC) is an aggressive form of invasive breast cancer, highly metastatic, representing 2–4% of all breast cancer cases in the United States. Despite its rare nature, IBC is responsible for 7–10% of all breast cancer deaths, with a 5-year survival rate of 40%. Thus, targeted and effective therapies against IBC are needed. Here, we proposed Lipocalin-2 (LCN2)—a secreted glycoprotein aberrantly abundant in different cancers—as a plausible target for IBC. In immunoblotting, we observed higher LCN2 protein levels in IBC cells than non-IBC cells, where the LCN2 levels were almost undetectable. We assessed the biological effects of targeting LCN2 in IBC cells with small interference RNAs (siRNAs) and small molecule inhibitors. siRNA-mediated LCN2 silencing in IBC cells significantly reduced cell proliferation, viability, migration, and invasion. Furthermore, LCN2 silencing promoted apoptosis and arrested the cell cycle progression in the G0/G1 to S phase transition. We used in silico analysis with a library of 25,000 compounds to identify potential LCN2 inhibitors, and four out of sixteen selected compounds significantly decreased cell proliferation, cell viability, and the AKT phosphorylation levels in SUM149 cells. Moreover, ectopically expressing LCN2 MCF7 cells, treated with two potential LCN2 inhibitors (ZINC00784494 and ZINC00640089) showed a significant decrease in cell proliferation. Our findings suggest LCN2 as a promising target for IBC treatment using siRNA and small molecule inhibitors.


Sign in / Sign up

Export Citation Format

Share Document