FOXD3 inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma through regulation of the PI3K–Akt pathway

2020 ◽  
Vol 98 (6) ◽  
pp. 653-660 ◽  
Author(s):  
Xiaoxing Xie ◽  
Gaoyun Xiong ◽  
Wenjun Chen ◽  
Hongdan Fu ◽  
Mingqian Li ◽  
...  

FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3’s precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase – protein kinase B (PI3K–Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K–Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K–Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K–Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K–Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.

2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.


2018 ◽  
Vol 47 (3) ◽  
pp. 1007-1024 ◽  
Author(s):  
Yi-Gang Qian ◽  
Zhou Ye ◽  
Hai-Yong Chen ◽  
Zhen Lv ◽  
Ai-Bin Zhang ◽  
...  

Background/Aims: Pancreatic cancer is an aggressive malignancy as a result of highly metastatic potential. The current study was carried out to alter the expression of LINC01121 in pancreatic cancer, with the aim of elucidating its effects on the biological processes of cell proliferation, migration, invasion, and apoptosis. We hypothesized that both the GLP1R gene and cAMP/PKA signaling pathway participate in the aforementioned process. Methods: Microarray data (GSE14245, GSE27890 and GSE16515) and annotating probe files linked to pancreatic cancer were downloaded through the GEO database. The Multi Experiment Matrix (MEM) site was used to predict the target gene of lncRNA. Both pancreatic cancer tissues (n = 56) and paracancerous tissues (n = 45) were collected from patients diagnosed with pancreatic cancer. Immunohistochemistry was applied to identify the positive expression rate of GLP1R protein. Isolated pancreatic cancer cells and PANC-1 cells were independently classified into the blank, negative control (NC), LINC01121 vector, siRNA-LINC01121, siRNA-GLP1R and siRNA-LINC01121 + siRNA-GLP1R groups. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were applied to detect the expressions of LINC01121, GLP1R, cAMP, PKA, CREB, Bcl-2, Bad and PCNA. Cell proliferation, migration, invasion, cycle progression, and apoptosis were examined by MTT assay, scratch test, Transwell assay and flow cytometry analyses of Annexin V-FITC/PI staining. Results: Observations were made indicating that LINC01121 was highly expressed, while low expressions of GLP1R in pancreatic cancer were detected based on microarray data, which was largely in consistent with the data collected of LINC01121 and GLP1R within the tissues. The target prediction program and luciferase activity analysis was testament to the notion suggesting that GLP1R was indeed a target of LINC01121. In contrast to the blank and NC groups, the LINC01121 vector group exhibited increased expressions of LINC01121; decreased mRNA and protein levels of GLP1R, Bad, cAMP, and PKA; increased protein levels of CREB, Bcl-2, PCNA, p-PKA and p-CREB; increased cell proliferation, migration and invasion; and decreased cell apoptosis. There was no significant difference detected among the blank, NC, and siRNA-LINC01121 + siRNA-GLP1R groups, except that decreased LINC01121 expression was determined in the siRNA-LINC01121 + siRNA-GLP1R group. Parallel data were observed in the pancreatic cancer cells and PANC-1 cells. Conclusion: The current study presents evidence indicating that LINC01121 might inhibit apoptosis while acting to promote proliferation, migration, and invasion of pancreatic cancer cells, supplementing the stance held that LINC01121 functions as a tumor promoter by means of its involvement in the process of translational repression of the GLP1R and inhibition of the cAMP/PKA signaling pathway.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yi Hu ◽  
Yan Ma ◽  
Jie Liu ◽  
Yanlin Cai ◽  
Mengmeng Zhang ◽  
...  

Abstract Background Cervical cancer (CC), causing significant morbidity and mortality worldwide, is one of the most common gynecological malignancies in women. SFN has been reported as a potential prognostic marker with apparent high expression in tumors. Nevertheless, the function mechanism of SFN is not clear yet in CC. Methods The relative expressions of RNAs were detected by real-time quantitative PCR (RT-qPCR). Colony formation assay, EdU stained assay and CCK-8 assay were to check cell proliferation ability in CC. Flow cytometry and apoptosis related proteins analysis were used to measure cells apoptosis capacity. Luciferase reporter assay and RNA pull down assay were to verify the molecular mechanism. Results SFN was highly expressed in CC tissues and CC cell lines compared with normal tissues and normal cell line. After interfering SFN, cell proliferation, migration and invasion ability was inhibited as well as cell apoptosis ability was promoted. In subsequence, miR-383-5p exhibited conspicuous low expression in CC tissues. And miR-383-5p was found to bind to SFN and have anti-cancerous effects in CC. Moreover, LINC01128 displayed remarkable high expression in CC tissues. Besides, LINC01128 shortage could reduce the expression of SFN at mRNA and protein levels. And the affinity between LINC01128 and miR-383-5p was verified. In the end, it was proved that LINC01128 could enhance cell proliferation, migration and invasion as well as inhibit cell apoptosis by binding with miR-383-5p and upregulating SFN. Conclusion LINC01128 expedited cells cellular process in CC by binding with miR-383-5p to release SFN. Graphical Abstract


2020 ◽  
Vol 19 (4) ◽  
pp. 745-749
Author(s):  
Hongqing Zhu ◽  
Yejun Si ◽  
Yun Zhuang ◽  
Meng Li ◽  
Jianmin Ji ◽  
...  

Purpose: To identify the biological function of phosphoserine aminotransferase 1 (PSAT1) in regulating cell proliferation and apoptosis in multiple myeloma (MM).Methods: The mRNA and protein levels of PSAT1 were determined using quantitative real-time polymerase chain reaction (PCR) and western blotting, respectively. Cell proliferation was measured using CCK-8 assay.Results: PSAT1 mRNA and protein expression levels were significantly increased in MM cell lines when compared to control cells. Moreover,  downregulation of PSAT1 inhibited MM cell proliferation and induced cell apoptosis, whereas overexpression of PSAT1 promoted MM cell  proliferation and suppressed cell apoptosis. Further analysis demonstrated that the underlying mechanism was via regulation of PI3K/AKT pathway.Conclusion: The results identified a novel role for PSAT1 in the progression of MM, which may provide a therapeutic and a new anticancer target for the therapy of MM. Keywords: Multiple myeloma, PSAT1, Cell proliferation, PI3K/AKT pathway


2020 ◽  
Vol 19 ◽  
pp. 153303381989225 ◽  
Author(s):  
Zhang Xuefang ◽  
Zheng Ruinian ◽  
Jiang Liji ◽  
Zhang Chun ◽  
Zheng Qiaolan ◽  
...  

Background: The incidence of nasopharyngeal carcinoma is increasing gradually, but the pathogenesis is not completely clear. MicroRNA, a highly conserved endogenous noncoding small molecule RNA, plays an essential role in the regulation of gene expression and is a hotspot in cancer research worldwide. Objectives: Although previous studies have confirmed that the abnormal expression of microRNAs is closely related to the progression of nasopharyngeal carcinoma, the role of miRNA-331-3p in nasopharyngeal carcinoma has not been studied. The purpose of this study was to explore the role and mechanism of miRNA-331-3p in the progression of nasopharyngeal carcinoma. Materials and Methods: Real-time quantitative reverse transcription polymerase chain reaction was performed to detect the expression of miRNA-331-3p in nasopharyngeal carcinoma clinical samples and cell lines (CNE-1 and 5-8F cells). After overexpression of miRNA-331-3p in CNE-1 cells, cell proliferation was measured by Cell Counting Kit-8 assay, cell invasion was detected by Transwell assay, and apoptosis was tested by flow cytometry. In addition, the dual-luciferase reporter assay was used to identify the target gene of miRNA-331-3p and Western blotting was performed to measure the relative protein expression. Results: The expression of miRNA-331-3p in nasopharyngeal carcinoma clinical samples and cells was decreased significantly. Overexpression of miRNA-331-3p markedly inhibited the proliferation and invasion of CNE-1 cells and promoted cell apoptosis. Moreover, overexpression of miRNA-331-3p reduced the expression of target gene elF4B, leading to inhibition of the phosphorylation of Phosphoinositide 3-kinase (PI3K) and Serine/ threonine kinase (AKT). Conclusion: miRNA-331-3p inhibited cell proliferation and induced cell apoptosis in nasopharyngeal carcinoma by targeting elF4B gene and then blocked the PI3K-AKT signaling pathway. Significance: The role of miRNA-331-3p in the development of NPC and its mechanism provide new ideas for the treatment of nasopharyngeal carcinoma.


2015 ◽  
Vol 146 (2) ◽  
pp. 124-135 ◽  
Author(s):  
Xiao Li ◽  
Li Chen ◽  
Wei Wang ◽  
Fan-Bin Meng ◽  
Ren-Tao Zhao ◽  
...  

miR-150 expression in osteosarcoma (OS) cell lines and human osteoblast cells was detected, and OS cell models were transfected with exogenous miR-150 to investigate its role in cell proliferation, invasion, and apoptosis. Our results showed that miR-150 expression in OS cells (MG63, Saos-2, SOSP-9607, and U2OS) was significantly lower compared to the osteoblast hFOB1.19 cell line (all p < 0.01). The expression level of miR-150 in MG63 cells that were transfected with exogenous miR-150 mimics was markedly upregulated, while the miR-150 expression level in the inhibitor group was significantly downregulated (both p < 0.01). Similar results were also found in SOSP-9607 cells. Importantly, exogenous miR-150 expression stimulated cell apoptosis and inhibited proliferation, invasion, and migration. A luciferase reporter assay displayed that miR-150 also regulated Sp1 expression by targeting its 3′-UTR, and qRT-PCR and Western blotting showed that elevated levels of miR-150 may reduce Sp1 protein expression. The mRNA and protein levels of Sp1 were upregulated after transfection with a Sp1-expression plasmid and partially reversed the inhibitory effects of miR-150 on cell proliferation, invasion, and metastasis in MG63 and SOSP-9607 cells, as well as promoted cell apoptosis. In conclusion, miR-150 inhibits cell proliferation, invasion, and metastasis and stimulates cell apoptosis by regulating the expression of Sp1. Therefore, miR-150 may be a potential clinical target for the treatment of OS patients.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jie Liu ◽  
Lan He ◽  
Jing Hu ◽  
Kairui Li ◽  
Fangliang Zhou ◽  
...  

Objective. To investigate the effect of isoimperatorin on nasopharyngeal carcinoma CNE2 cell apoptosis and the role of the MAPK/ERK1/2 signaling pathway in inducing apoptosis. Methods. Real-time cellular analysis technology (RTCA) and MTT were used to detect cell proliferation; Annexin V-FITC/PI dual-fluorescence flow cytometry analysis, Hoechst 33342 staining, and mitochondrial membrane potential detection kit were used to detect cell apoptosis; western blot was used to detect protein expression. Results. Different concentrations of isoimperatorin (10 μM, 20 μM, 30 μM, and 40 μM) significantly inhibited the nasopharyngeal carcinoma CNE2 cell proliferation, and 48 h later, the inhibitory effect of the 40 μM treatment was significantly higher than that of 10 μM and 20 μM. Treatment for 48 h significantly induced nasopharyngeal carcinoma cell apoptosis and resulted in nuclear pyknosis and fragmentation. At the same timepoint, the expression levels of proliferation-related protein PCNA as well as antiapoptosis proteins XIAP, survivin, and Bcl-2 were decreased by drug treatment, the expression level of proapoptosis protein Bax was increased, and the expression of the key MAPK/ERK1/2 signaling pathway proteins p-c-Raf, p-MEK, and p-ERK1/2 of were decreased. After activation of the MAPK/ERK1/2 signaling pathway by isoprenaline hydrochloride (ISO), the efficacy of isoimperatorin to downregulate p-c-Raf, p-MEK, and p-ERK1/2 expressions in the MAPK/ERK1/2 signaling pathway and proliferation-related protein PCNA as well as antiapoptosis proteins XIAP, surviving, and Bcl-2 was reduced compared with that of isoimperatorin alone, the effect of upregulating the proapoptotic protein Bax was reduced, and the apoptosis rate was also decreased. Conclusion. Isoimperatorin can induce nasopharyngeal carcinoma CNE2 cell apoptosis through the MAPK/ERK1/2 signaling pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hua Zhang ◽  
Pingling Lin ◽  
Lei Fu ◽  
Zhijun Li ◽  
Yan Ding

Background. Propofol is an anesthetic commonly used clinically and has been found to have antitumor activity in various cancers. The purpose of this study was to investigate the role of propofol in hepatoblastoma (HB). Methods. CCK-8 and transwell were used to measure cell proliferation, migration, and invasion in HB cells. Cell apoptosis rate was measured by FCM. The expression of CCL18 in HB tissues and cells was detected by RT-qPCR. Western blotting was used to explore the protein expression of CCK18- and PI3K/AKT-related proteins. Results. The expression of CCL18 in HB tissues and cells was overexpressed compared with control groups. CCL18 knockdown was found to notably block cell proliferation and progression, while enhancing cell apoptosis in HuH-6 and HepT1 cells. Furthermore, propofol suppressed the proliferation of HB cells in a dose-dependent manner. According to the results, we chose 5 μg/mL of propofol-treated cells for 48 hours as the subsequent experimental conditions. We found that propofol (5 μg/mL, 48 h) significantly blocked cell migration and invasion, but induced cell apoptosis in HuH-6 and HepT1 cells. In addition, CCK18 overexpression facilitated cell progression in HB cells, while propofol dramatically suppressed the effect of CCK18. Besides that, propofol suppressed the PI3K/AKT pathway. Conclusion. Propofol suppressed the development of HB cells by inhibiting CCK18 expression and the PI3K/AKT pathway. Therefore, we infer that propofol plays a role in the treatment of HB.


2017 ◽  
Vol 42 (4) ◽  
pp. 1431-1446 ◽  
Author(s):  
Yufei Zhou ◽  
Shaoxia Li ◽  
Jiangtao Li ◽  
Dongfeng Wang ◽  
Quanxing Li

Objective: This study explored the ability of microRNA-135a (miR-135a) to influence cell proliferation, migration, invasion, apoptosis and tumor angiogenesis through the IGF-1/PI3K/Akt signaling pathway in non-small cell lung cancer (NSCLC). Methods: NSCLC tissues and adjacent normal tissues were collected from 138 NSCLC patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of miR-135a and IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 mRNA; western blotting was used to determine the expression levels of IGF-1, PI3K and Akt protein; and enzyme-linked immunosorbent assay (ELISA) was used to analyze the expression levels of VEGF, bFGF and IL-8 protein. Human NSCLC cell lines (A549, H460, and H1299) and the human bronchial epithelial cell line (HBE) were selected. A549 cells were assigned to blank, negative control (NC), miR-135a mimics, miR-135a inhibitors, IGF-1 siRNA and miR-135a inhibitors + IGF-1 siRNA groups. The following were performed: an MTT assay to assess cell proliferation, a scratch test to detect cell migration, a Transwell assay to measure cell invasion, and a flow cytometry to analyze cell apoptosis. Results: The expression level of miR-135a was lower while those of IGF-1, PI3K and Akt mRNA were higher in NSCLC tissues than in the adjacent normal tissues. Dual-luciferase reporter assay indicated IGF-1 as a target of miR-135a. The in vitro results showed that compared with the blank group, cell proliferation, migration and invasion were suppressed, mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 were reduced, and cell apoptosis was enhanced in the miR-135a mimics and IGF-1 siRNA groups. Compared with the IGF-1 siRNA group, cells in the miR-135a inhibitors + IGF-1 siRNA group demonstrated increased cell proliferation, migration and invasion, elevated mRNA and protein levels of IGF-1, PI3K, Akt, VEGF, bFGF and IL-8 and reduced cell apoptosis. Conclusion: These findings indicated that miR-135a promotes cell apoptosis and inhibits cell proliferation, migration, invasion and tumor angiogenesis by targeting IGF-1 gene through the IGF-1/PI3K/Akt signaling pathway in NSCLC.


Sign in / Sign up

Export Citation Format

Share Document