Heat transfer of evaporating droplet flow in low pressure systems

1980 ◽  
Vol 58 (3) ◽  
pp. 303-308 ◽  
Author(s):  
Anil Rane ◽  
Shi-Chune Yao
2015 ◽  
Vol 15 (18) ◽  
pp. 10839-10856 ◽  
Author(s):  
G. Dufour ◽  
M. Eremenko ◽  
J. Cuesta ◽  
C. Doche ◽  
G. Foret ◽  
...  

Abstract. We use satellite observations from IASI (Infrared Atmospheric Sounding Interferometer) on board the MetOp-A satellite to evaluate the springtime daily variations in lower-tropospheric ozone over east Asia. The availability of semi-independent columns of ozone from the surface up to 12 km simultaneously with CO columns provides a powerful observational data set to diagnose the processes controlling tropospheric ozone enhancement on synoptic scales. By combining IASI observations with meteorological reanalyses from ERA-Interim, we develop an analysis method based only on IASI ozone and CO observations to identify the respective roles of the stratospheric source and the photochemical source in ozone distribution and variations over east Asia. The succession of low- and high-pressure systems drives the day-to-day variations in lower-tropospheric ozone. A case study analysis of one frontal system and one cut-off low system in May 2008 shows that reversible subsiding and ascending ozone transfers in the upper-troposphere–lower-stratosphere (UTLS) region, due to the tropopause perturbations occurring in the vicinity of low-pressure systems, impact free and lower-tropospheric ozone over large regions, especially north of 40° N, and largely explain the ozone enhancement observed with IASI for these latitudes. Irreversible stratosphere–troposphere exchanges of ozone-rich air masses occur more locally in the southern and southeastern flanks of the trough. The contribution to the lower-tropospheric ozone column is difficult to dissociate from the tropopause perturbations generated by weather systems. For regions south of 40° N, a significant correlation has been found between lower-tropospheric ozone and carbon monoxide (CO) observations from IASI, especially over the North China Plain (NCP). Considering carbon monoxide observations as a pollutant tracer, the O3–CO correlation indicates that the photochemical production of ozone from primary pollutants emitted over such large polluted regions significantly contributes to the ozone enhancements observed in the lower troposphere via IASI. When low-pressure systems circulate over the NCP, stratospheric and pollution sources play a concomitant role in the ozone enhancement. IASI's 3-D observational capability allows the areas in which each source dominates to be determined. Moreover, the studied cut-off low system has enough potential convective capacity to uplift pollutants (ozone and CO) and to transport them to Japan. The increase in the enhancement ratio of ozone to CO from 0.16 on 12 May over the North China Plain to 0.28 over the Sea of Japan on 14 May indicates photochemical processing during the plume transport.


2017 ◽  
Vol 122 (22) ◽  
pp. 12,140-12,151 ◽  
Author(s):  
Wenhao Dong ◽  
Yanluan Lin ◽  
Jonathon S. Wright ◽  
Yuanyu Xie ◽  
Fanghua Xu ◽  
...  

2009 ◽  
Vol 39 (6) ◽  
pp. 1317-1339 ◽  
Author(s):  
Robert S. Pickart ◽  
Alison M. Macdonald ◽  
G. W. K. Moore ◽  
Ian A. Renfrew ◽  
John E. Walsh ◽  
...  

Abstract The seasonal change in the development of Aleutian low pressure systems from early fall to early winter is analyzed using a combination of meteorological reanalysis fields, satellite sea surface temperature (SST) data, and satellite wind data. The time period of the study is September–December 2002, although results are shown to be representative of the long-term climatology. Characteristics of the storms were documented as they progressed across the North Pacific, including their path, central pressure, deepening rate, and speed of translation. Clear patterns emerged. Storms tended to deepen in two distinct geographical locations—the Gulf of Alaska in early fall and the western North Pacific in late fall. In the Gulf of Alaska, a quasi-permanent “notch” in the SST distribution is argued to be of significance. The signature of the notch is imprinted in the atmosphere, resulting in a region of enhanced cyclonic potential vorticity in the lower troposphere that is conducive for storm development. Later in the season, as winter approaches and the Sea of Okhotsk becomes partially ice covered and cold, the air emanating from the Asian continent leads to enhanced baroclinicity in the region south of Kamchatka. This corresponds to enhanced storm cyclogenesis in that region. Consequently, there is a seasonal westward migration of the dominant lobe of the Aleutian low. The impact of the wind stress curl pattern resulting from these two regions of storm development on the oceanic circulation is investigated using historical hydrography. It is argued that the seasonal bimodal input of cyclonic vorticity from the wind may be partly responsible for the two distinct North Pacific subarctic gyres.


2021 ◽  
Author(s):  
Tresa Mary Thomas ◽  
Govindasamy Bala ◽  
Venkata Vemavarapu Srinivas

<p>Monsoon low pressure systems (LPS) are synoptic scale tropical disturbances that form in the Indian subcontinent over the quasi-stationary monsoon trough axis during the monsoon period (June to September). In a recent study, we showed that 60-70% of monsoon rainfall and 78% of extreme precipitation events in India are associated with LPS. Global circulation models (GCMs) have been used to understand the behavior of tropical disturbances in the past. It has been found that model resolution plays a key role in simulating the climatology of tropical storms, with finer resolution (of the order of 20-100km) required to better represent the genesis and propagation of these storms. As GCMs can be run at these finer resolutions today, various characteristics of LPS in the Indian subcontinent can be studied. It has been found that most CMIP5 GCMs show a southward latitudinal shift in the monsoon trough location and hence in the LPS tracks and associated characteristics. This shift has been attributed to a weaker simulated meridional tropospheric temperature gradient (MTG) in the models. However, the cause of weaker MTG in models is not known. In this study, we investigate the reason for the weaker MTG and hence the southward latitudinal shift of LPS tracks in the Climate Earth System Model (CESM1.2.2). A present-day control simulation is performed at 0.9°×1.25° horizontal resolution, and output is saved at 6-hourly intervals for LPS track analysis. We find that CESM is capable of simulating the general behavior of monsoon over the Indian subcontinent in terms of seasonality, propagation of monsoon rainfall, and mean monsoon winds. LPS are tracked in the CESM outputs by our recently proposed Automated Tracking Algorithm using Geopotential Criteria (ATAGC). A southward latitudinal shift is observed in the median track of LPS in CESM present-day simulations. The value of MTG is also significantly smaller compared to the observed MTG. The results from investigations on the likely causes for the weaker MTG in CESM will be presented at the meeting.</p>


1999 ◽  
Author(s):  
Fang Yan ◽  
Bakhtier Farouk

Abstract High Knudsen (Kn) number flows are found in vacuum and micro-scale systems. Such flows are characterized by non-continuum behavior. For gases, the flows are usually in the slip or transition regimes. In this paper, the direct simulation Monte Carlo (DSMC) method has been applied to compute low pressure, high Kn flow fields in partially heated channels. Computations were carried out for nitrogen, argon, hydrogen, oxygen and noble gas mixtures. Variation of the Kn is obtained by reducing the pressure while keeping the channel width constant. Nonlinear pressure profiles along the channel centerline are observed. Heat transfer from the channel walls is also calculated and compared with the Graetz solution. The effects of varying pressure, inlet flow and gas transport properties (Kn, Reynolds number, Re and the Prandtl number, Pr respectively) on the wall heat transfer (Nu) were examined. A simplified correlation for predicting Nu¯ as a function of Pe¯ and Kn¯ is presented.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2257-2262
Author(s):  
Jie Yu Du ◽  
Jiang Xie ◽  
Yu Qi Zhao ◽  
Li Peng Zhang ◽  
Rui Bin Zhu

The hot flushing is a major means of removing wax. For low pressure reservoir, it is possible to produce a large number of washing fluid flowing into the formation, which affects the well production recovery. The application of hollow sucker rod hot flushing technology can avoid fluid pouring back into the formation, and the wells can keep production. Based on the principle of hollow sucker rod hot flushing and heat transfer theory, calculation model of temperature field was established, and hollow sucker rod hot flushing simulation system was developed, which can guide flushing in oilfield.


Sign in / Sign up

Export Citation Format

Share Document