scholarly journals Ecological costs of climate change on marine predator–prey population distributions by 2050

2020 ◽  
Vol 10 (2) ◽  
pp. 1069-1086 ◽  
Author(s):  
Dinara Sadykova ◽  
Beth E. Scott ◽  
Michela De Dominicis ◽  
Sarah L. Wakelin ◽  
Judith Wolf ◽  
...  
2021 ◽  
Vol 6 (2) ◽  
pp. 885
Author(s):  
Wan Natasha Wan Hussin ◽  
Rohana Embong ◽  
Che Noorlia Noor

In the marine ecosystem, the time delay or lag may occur in the predator response function, which measures the rate of capture of prey by a predator. This is because, when the growth of the prey population is null at the time delay period, the predator’s growth is affected by its population and prey population densities only after the time delay period. Therefore, the generalized Gause type predator-prey fishery models with a selective proportional harvesting rate of fish and time lag in the Holling type II predator response function are proposed to simulate and solve the population dynamical problem. From the mathematical analysis of the models, a certain dimension of time delays in the predator response or reaction function can change originally stable non-trivial critical points to unstable ones. This is due to the existence of the Hopf bifurcation that measures the critical values of the time lag, which will affect the stabilities of the non-trivial critical points of the models. Therefore, the effects of increasing and decreasing the values of selective proportional harvesting rate terms of prey and predator on the stabilities of the non-trivial critical points of the fishery models were analysed. Results have shown that, by increasing the values of the total proportion of prey and predator harvesting denoted by qx Ex and qy Ey respectively, within the range 0.3102 ≤ qx Ex ≤ 0.9984 and 0.5049 ≤ qy Ey ≤ 0.5363, the originally unstable non-trivial critical points of the fishery models can be stable.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Kankan Sarkar ◽  
Subhas Khajanchi ◽  
Prakash Chandra Mali ◽  
Juan J. Nieto

In this study, we investigate a mathematical model that describes the interactive dynamics of a predator-prey system with different kinds of response function. The positivity, boundedness, and uniform persistence of the system are established. We investigate the biologically feasible singular points and their stability analysis. We perform a comparative study by considering different kinds of functional responses, which suggest that the dynamical behavior of the system remains unaltered, but the position of the bifurcation points altered. Our model system undergoes Hopf bifurcation with respect to the growth rate of the prey population, which indicates that a periodic solution occurs around a fixed point. Also, we observed that our predator-prey system experiences transcritical bifurcation for the prey population growth rate. By using normal form theory and center manifold theorem, we investigate the direction and stability of Hopf bifurcation. The biological implications of the analytical and numerical findings are also discussed in this study.


2018 ◽  
Vol 18 (03) ◽  
pp. 255-261
Author(s):  
Ali Al-Qahtani ◽  
Aesha Almoeed ◽  
Bayan Najmi ◽  
Shaban Aly

Author(s):  
Vincent Bretagnolle ◽  
Julien Terraube

Climate change is likely to impact all trophic levels, although the response of communities and ecosystems to it has only recently received considerable attention. Further, it is expected to affect the magnitude of species interactions themselves. In this chapter, we summarize why and how climate change could affect predator–prey interactions, then review the literature about its impact on predator–prey relationships in birds, and provide prospects for future studies. Expected effects on prey or predators may include changes in the following: distribution, phenology, population density, behaviour, morphology, or physiology. We review the currently available information concerning particular key topics: top-down versus bottom-up control, specialist versus generalist predators, functional versus numerical responses, trophic cascades and regime shifts, and lastly adaptation and selection. Finally, we focus our review on two well-studied bird examples: seabirds and raptors. Key future topics include long-term studies, modelling and experimental studies, evolutionary questions, and conservation issues.


2019 ◽  
Vol 10 (02) ◽  
pp. 1850009
Author(s):  
OPhir Nave ◽  
Yifat Baron ◽  
Manju Sharma

In this paper, we applied the well-known homotopy analysis methods (HAM), which is a semi-analytical method, perturbation method, to study a reaction–diffusion–advection model for the dynamics of populations under biological control. According to the predator–prey model, the advection expression represents the predator density movement in which the acceleration is proportional to the prey density gradient. The prey population reproduces logistically, and the interactions of prey population obey the Holling’s prey-dependent Type II functional response. The predation process splits into the following subdivided processes: random movement which is represented by diffusion, direct movement which is described by prey taxis, local prey interactions, and consumptions which are represented by the trophic function. In order to ensure a successful biological control, one should make the predator-pest population to stabilize at a very low level of pest density. One reason for this effect is the intermediate taxis activity. However, when the system loses stability, for example very intensive prey taxis destroys the stability, it leads to chaotic dynamics with pronounced outbreaks of pest density.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Felipe A Briceño ◽  
Quinn P Fitzgibbon ◽  
Elias T Polymeropoulos ◽  
Iván A Hinojosa ◽  
Gretta T Pecl

Abstract Predation risk can strongly shape prey ecological traits, with specific anti-predator responses displayed to reduce encounters with predators. Key environmental drivers, such as temperature, can profoundly modulate prey energetic costs in ectotherms, although we currently lack knowledge of how both temperature and predation risk can challenge prey physiology and ecology. Such uncertainties in predator–prey interactions are particularly relevant for marine regions experiencing rapid environmental changes due to climate change. Using the octopus (Octopus maorum)–spiny lobster (Jasus edwardsii) interaction as a predator–prey model, we examined different metabolic traits of sub adult spiny lobsters under predation risk in combination with two thermal scenarios: ‘current’ (20°C) and ‘warming’ (23°C), based on projections of sea-surface temperature under climate change. We examined lobster standard metabolic rates to define the energetic requirements at specific temperatures. Routine metabolic rates (RMRs) within a respirometer were used as a proxy of lobster activity during night and day time, and active metabolic rates, aerobic scope and excess post-exercise oxygen consumption were used to assess the energetic costs associated with escape responses (i.e. tail-flipping) in both thermal scenarios. Lobster standard metabolic rate increased at 23°C, suggesting an elevated energetic requirement (39%) compared to 20°C. Unthreatened lobsters displayed a strong circadian pattern in RMR with higher rates during the night compared with the day, which were strongly magnified at 23°C. Once exposed to predation risk, lobsters at 20°C quickly reduced their RMR by ~29%, suggesting an immobility or ‘freezing’ response to avoid predators. Conversely, lobsters acclimated to 23°C did not display such an anti-predator response. These findings suggest that warmer temperatures may induce a change to the typical immobility predation risk response of lobsters. It is hypothesized that heightened energetic maintenance requirements at higher temperatures may act to override the normal predator-risk responses under climate-change scenarios.


1995 ◽  
Vol 32 (01) ◽  
pp. 274-277
Author(s):  
John Coffey

A new stochastic predator-prey model is introduced. The predator population X(t) is described by a linear birth-and-death process with birth rate λ 1 X and death rate μ 1 X. The prey population Y(t) is described by a linear birth-and-death process in which the birth rate is λ 2 Y and the death rate is . It is proven that and iff


2020 ◽  
Vol 13 (07) ◽  
pp. 2050065
Author(s):  
Xuebing Zhang ◽  
Guanglan Wang ◽  
Honglan Zhu

In this study, we investigate the optimal control problem for a diffusion eco-epidemiological predator–prey model. We applied two controllers to this model. One is the separation control, which separates the uninfected prey from the infected prey population, and the other is used as a treatment control to decrease the mortality caused by the disease. Then, we propose an optimal problem to minimize the infected prey population at the final time and the cost cause by the controls. To do this, by the operator semigroup theory we prove the existence of the solution to the controlled system. Furthermore, we prove the existence of the optimal controls and obtain the first-order necessary optimality condition for the optimal controls. Finally, some numerical simulations are carried out to support the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document