Skipjack roe protein hydrolysate combined with tannic acid increases the stability of fish oil upon microencapsulation

2014 ◽  
Vol 117 (5) ◽  
pp. 646-656 ◽  
Author(s):  
Rossawan Intarasirisawat ◽  
Soottawat Benjakul ◽  
Wonnop Vissessanguan ◽  
Sajid Maqsood ◽  
Kazufumi Osako
2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Laura Brelle ◽  
Estelle Renard ◽  
Valerie Langlois

A novel generation of gels based on medium chain length poly(3-hydroxyalkanoate)s, mcl-PHAs, were developed by using ionic interactions. First, water soluble mcl-PHAs containing sulfonate groups were obtained by thiol-ene reaction in the presence of sodium-3-mercapto-1-ethanesulfonate. Anionic PHAs were physically crosslinked by divalent inorganic cations Ca2+, Ba2+, Mg2+ or by ammonium derivatives of gallic acid GA-N(CH3)3+ or tannic acid TA-N(CH3)3+. The ammonium derivatives were designed through the chemical modification of gallic acid GA or tannic acid TA with glycidyl trimethyl ammonium chloride (GTMA). The results clearly demonstrated that the formation of the networks depends on the nature of the cations. A low viscoelastic network having an elastic around 40 Pa is formed in the presence of Ca2+. Although the gel formation is not possible in the presence of GA-N(CH3)3+, the mechanical properties increased in the presence of TA-N(CH3)3+ with an elastic modulus G’ around 4200 Pa. The PHOSO3−/TA-N(CH3)3+ gels having antioxidant activity, due to the presence of tannic acid, remained stable for at least 5 months. Thus, the stability of these novel networks based on PHA encourage their use in the development of active biomaterials.


2012 ◽  
Vol 239-240 ◽  
pp. 1573-1576
Author(s):  
Zhu Qing Gao ◽  
Xiao Dong Cai ◽  
Kai Cheng Ling

At different temperatures, the protonation constants of tannic acid and the complex apparent stability constants between tannic acid and VO2+ were determined by using pH potentimetric method. The results showed that the protonation constants and the complex apparent stability constants slightly decreased with the raising temperature. In accordance with the pH value in the tannin extract technology, the conditional stability constants of the complex were calculated on the basis of the acid effect of tannic acid and the hydrolysis effect of VO2+. It was found that pH greatly affected the stability constants of the complex , so pH must be strictly controlled in the tannin extract technology.


PEDIATRICS ◽  
1973 ◽  
Vol 51 (6) ◽  
pp. 1016-1026
Author(s):  
Ralph D. Feigin ◽  
Kanneth S. Moss ◽  
Penelope G. Shackelford

The present study was designed to assess the stability of ampicillin, carbenicillin, clindamycin, kanamycin, cephalothin, methicillin, and penicillin in three parenteral hyperalimentation mixtures as reconstituted for delivery to the patient in the clinical setting. Stability at 4C, 25C, and 37C was tested in parenteral hyperalimentation mixtures containing either crystalline amino acids or a protein hydrolysate. In two series of experiments the stability at 4C, 25C, and 37C of ampicillin, cephalothin, and kanamycin also was assessed in Isolyte M (ISO M), Isolyte P (ISO P), Ringer's lactate (LR), 5% dextrose in water, (D5W), 10% dextrose in water (D1OW), dextrose in normal saline (D5S), and normal saline (NS) to which hydrocortisone or heparin had been added. All antibiotics retained their effectiveness at an acceptable level in the hyperalimentation solutions at 4C. At 25C and 37C, all antibiotics except clindamycin lost activity by 24 hours. Kanamycin was least stable in these solutions and ampicillin also lost a significant degree of antimicrobial activity. Addition of heparin or hydrocortisone imparted stability to ampicillin in the seven parenteral solutions although significant loss of activity was noted at 37C in D5W, D1OW, D5S, and LR. Most solutions containing heparin or hydrocortisone and cephalothin turned yellow by 24 hours. A precipitate appeared in solutions containing heparin and kanamycin but there was minimal loss of antimicrobial activity. Kanamycin was stable in all solutions containing hydrocortisone except in D5W and D10W at 37C.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Xueqin Wang ◽  
Huahua Yu ◽  
Ronge Xing ◽  
Xiaolin Chen ◽  
Song Liu ◽  
...  

This study optimizes the preparation conditions for mackerel protein hydrolysate (MPH) by response surface methodology (RSM) and investigates the stability of the antioxidant activity of MPHs (<2.5 kDa). The optimal conditions were as follows: enzyme concentration of 1726.85 U/g, pH of 7.00, temperature of 39.55°C, time of 5.5 h, and water/material ratio of 25 : 1, and the maximum DPPH scavenging activity was 79.14%. The MPHs indicated significant cellular antioxidant activity at low concentrations. Furthermore, the temperature and freeze-thaw cycles had little effect on the antioxidative stability while pH had significant effect on the antioxidative stability. In addition, the MPHs were sensitive to the metal ions, such as Fe2+, Fe3+, Zn2+, and Cu2+. Notably, when the concentrations of Fe2+and Fe3+were 5 mM, the DPPH scavenging activities were only 1.1% and 0.6%, respectively; furthermore, Cu2+at a 5 mM concentration could completely inhibit the DPPH scavenging activity of MPHs. In contrast, K+and Mg2+had no notable effect on the antioxidant activity of MPHs. These results may provide a scientific basis for the processing and application of MPHs.


2020 ◽  
Vol 29 (3) ◽  
pp. 293-306
Author(s):  
Jeyakumari Annamalai ◽  
Zynudheen Aliyamveetil Abubacker ◽  
Narasimha Murthy Lakshmi ◽  
Parvathy Unnikrishnan

2020 ◽  
Vol 8 ◽  
Author(s):  
Silvia Berto ◽  
Eugenio Alladio

Chemometric techniques were applied to the study of the interaction of iron(III) and tannic acid (TA). Modeling the interaction of Fe(III)–TA is a challenge, as can be the modeling of the metal complexation upon natural macromolecules without a well-defined molecular structure. The chemical formula for commercial TA is often given as C76H52O46, but in fact, it is a mixture of polygalloyl glucoses or polygalloyl quinic acid esters with the number of galloyl moieties per molecule ranging from 2 up to 12. Therefore, the data treatment cannot be based on just the stoichiometric approach. In this work, the redox behavior and the coordination capability of the TA toward Fe(III) were studied by UV-vis spectrophotometry and fluorescence spectroscopy. Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) and Parallel Factor Analysis (PARAFAC) were used for the data treatment, respectively. The pH range in which there is the redox stability of the system Fe(III)–TA was evaluated. The binding capability of TA toward Fe(III), the spectral features of coordination compounds, and the concentration profiles of the species in solution as a function of pH were defined. Moreover, the stability of the interaction between TA and Fe(III) was interpreted through the chemical models usually employed to depict the interaction of metal cations with humic substances and quantified using the concentration profiles estimated by MCR-ALS.


2020 ◽  
Vol 593 ◽  
pp. 117383 ◽  
Author(s):  
Zhenxing Wang ◽  
Mingcai Han ◽  
Jin Zhang ◽  
Fang He ◽  
Shaoqin Peng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document