Comparison of methods for detecting mitomycin C- and ethyl nitrosourea-induced germ cell damage in mice: Sperm enzyme activities, sperm motility, testis weight

1984 ◽  
Vol 6 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Gyula Ficsor ◽  
Gregory M. Oldford ◽  
Karen R. Loughlin ◽  
Brahma B. Panda ◽  
Janice L. Dubien ◽  
...  
2012 ◽  
Vol 3 (5) ◽  
pp. 321-326 ◽  
Author(s):  
G. L. Rodríguez-González ◽  
R. M. Vigueras-Villaseñor ◽  
S. Millán ◽  
N. Moran ◽  
R. Trejo ◽  
...  

Maternal protein restriction (MPR) during pregnancy impaired the reproduction of male offspring. We investigated, during the first wave of spermatogenesis, whether MPR exerts deleterious effects on germ cell proliferation and differentiation, as well as androgen receptor (AR) protein expression, which was used as a marker for Sertoli cell (SC) maturation. At the beginning of pregnancy (day 0), dams were fed a control diet (C: 20% casein) or a restricted isocaloric diet (R: 10% casein). After birth, four groups were established: CC, RR, CR and RC (first letter diet during pregnancy and second during lactation). Male offspring were studied at postnatal days 14, 21 and 36. At birth, pup body weight was unchanged. Body weight and testis weight were reduced in RR and CR groups at all ages evaluated. MPR delayed the germinal epithelium development at all ages evaluated. On performing Western blot and immunohistochemistry, AR expression was found to be lower in the three restricted groups. The results suggest that MPR during pregnancy and/or lactation delays SC maturation and germ cell differentiation, and affects intratubular organization. These changes might be responsible for the lower fertility rate at older ages.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Juan G. Reyes ◽  
Jorge G. Farias ◽  
Sebastián Henríquez-Olavarrieta ◽  
Eva Madrid ◽  
Mario Parraga ◽  
...  

Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.


2020 ◽  
Vol 39 (9) ◽  
pp. 1235-1256 ◽  
Author(s):  
C Sahu ◽  
DK Dwivedi ◽  
GB Jena

Diabetes increases the possibility of germ cell damage, hypogonadism, and male infertility. Diabetic condition negatively impacts zinc (Zn) and selenium (Se) levels in the body. Zn and Se are among the most important trace elements involved in the regulation of redox reaction, antioxidants enzymes activities, and DNA expression in a germ cell. The present study aimed to elucidate the combined effects of Zn and Se treatment on diabetes-induced germ cell damage in male Sprague Dawley rats. Type 1 diabetes was induced by the single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) were administered daily for 8 consecutive weeks. All the animals were provided with normal feed and water throughout the study. The effects on germ cell damage were evaluated by body weight, feed-water intake, organ weight, sperm count, motility, sperm head morphology, biochemical analysis, histology, immunohistochemistry, halo assay, germ cell comet assay, testes terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, sperm TUNEL assay, serum protein pattern analysis, and subcellular analysis using transmission electron microscopy. Further, the expressions of nuclear erythroid-derived related factor 2, catalase, glutathione peroxidase 4, and glutathione peroxidase 5 were carried out to ascertain the mechanism of protection. The present results demonstrated that 8 weeks combined treatment of Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) reduced diabetes-induced germ cell damage. This study further highlighted that Zn and Se combination treatment might be a better strategy for the germ cell protection in diabetes and deserve further investigation.


Endocrinology ◽  
2000 ◽  
Vol 141 (10) ◽  
pp. 3898-3907 ◽  
Author(s):  
N. Atanassova ◽  
C. McKinnell ◽  
K. J. Turner ◽  
M. Walker ◽  
J. S. Fisher ◽  
...  

Abstract This study investigated whether neonatal exposure of male rats to estrogenic compounds altered pubertal spermatogenesis (days 18 and 25) and whether the changes observed resulted in long-term changes in testis size, mating, or fertility (days 90–100). Rats were treated neonatally with a range of doses (0.01–10 μg) of diethylstilbestrol (DES; administered on alternate days from days 2–12), a high dose of octylphenol (OP; 2 mg administered daily from days 2–12) or bisphenol A (Bis-A; 0.5 mg administered daily from days 2–12), or vehicle, while maintained on a standard soy-containing diet. The effect on the same parameters of rearing control animals on a soy-free diet was also assessed as was the effect of administering such animals genistein (4 mg/kg/day daily from days 2–18). Testis weight, seminiferous tubule lumen formation, the germ cell apoptotic index (apoptotic/viable germ cell nuclear volume), and spermatocyte nuclear volume per unit Sertoli cell nuclear volume were used to characterize pubertal spermatogenesis. Compared with (soy-fed) controls, DES administration caused dose-dependent retardation of pubertal spermatogenesis on day 18, as evidenced by decreases in testis weight, lumen formation, and spermatocyte nuclear volume per unit Sertoli cell and elevation of the germ cell apoptotic index. However, the two lowest doses of DES (0.1 and 0.01 μg) significantly increased spermatocyte nuclear volume per unit Sertoli cell. Similarly, treatment with either OP or Bis-A significantly advanced this and some of the other aspects of pubertal spermatogenesis. Maintenance of control animals on a soy-free diet also significantly advanced lumen formation and spermatocyte nuclear volume per unit Sertoli cell compared with controls fed a soy-containing diet. Administration of genistein reversed the stimulatory effects of a soy-free diet and significantly retarded most measures of pubertal spermatogenesis. In general, plasma FSH levels in the treatment groups changed in parallel to the spermatogenic changes (reduced when pubertal spermatogenesis retarded, increased when pubertal spermatogenesis advanced). By day 25, although the changes in FSH levels largely persisted, all of the stimulatory effects on spermatogenesis seen on day 18 in the various treatment groups were no longer evident. In adulthood, testis weight was decreased dose dependently in rats treated neonatally with DES, but only the lowest dose group (0.01 μg) showed evidence of mating (3 of 6) and normal fertility (3 litters). Animals treated neonatally with OP or Bis-A had normal or increased (Bis-A) testis weights and exhibited reasonably normal mating/fertility. Animals fed a soy-free diet had significantly larger testes than controls fed a soy-containing diet, and this difference was confirmed in a much larger study of more than 24 litters, which also showed a significant decrease in plasma FSH levels and a significant increase in body weight in the males kept on a soy-free diet. Neonatal treatment with genistein did not alter adult testis weight, and although most males exhibited normal mating and fertility, a minority did not mate or were infertile. It is concluded that 1) neonatal exposure of rats to low levels of estrogens can advance the first wave of spermatogenesis at puberty, although it is unclear whether this is due to direct effects of the estrogen or to associated elevation of FSH levels; 2) the effect of high doses of OP and Bis-A on these processes is essentially benign; and 3) the presence or absence of soy or genistein in the diet has significant short-term (pubertal spermatogenesis) and long-term (body weight, testis size, FSH levels, and possibly mating) effects on males.


2008 ◽  
Vol 12 (2) ◽  
pp. 479-495 ◽  
Author(s):  
I. Mor ◽  
E.H. Sklan ◽  
E. Podoly ◽  
M. Pick ◽  
M. Kirschner ◽  
...  

2021 ◽  
Author(s):  
Xu Zhang ◽  
Xinglin Chen ◽  
Tongtong Zhang ◽  
Xiaohan Ren ◽  
Xiang Zhou ◽  
...  

Abstract Toxic cyanobacteria blooms are a potential threat to global aquatic ecosystems and human health. Microcystin-leucine-arginine (MC-LR) is the most toxic variant of microcystins (MCs), and exposure to MCs can damage the male reproductive system.Two electronic databases were searched for controlled studies of rodents and fishes published before September 2020. Effect sizes were calculated for eight main reproductive parameters, including sperm count, sperm motility, sperm morphology, serum testosterone, testis weight, serum follicle stimulating hormone (FSH), serum luteinising hormone (LH) and serum estradiol. Nine meta-analyses of individual parameters were conducted using R version 4.0.2. Fifteen studies were included in the meta-analysis. In the studies of rodents, exposure to MC-LR by intraperitoneal injection or intragastric administration yielded statistically significant effects on sperm count (standardised mean difference (SMD) = -1.7426 (95% CI: -2.2098 to -1.2754)), abnormal sperm rate (SMD = 1.6714 (95% CI: 0.9702 to 2.3726)), sperm motility (SMD = -2.8822 (95% CI: -3.9811 to -1.7834)), testis weight (SMD = -2.8822 (95% CI: -3.9811 to -1.7834)) and serum FSH (SMD = 0.4707 (95% CI: 0.0659 to 0.8756)). In fish studies, the changes in serum testosterone (SMD = 0.5521 (95% CI: 0.1652; 0.9391)) and estradiol (SMD = 0.6398 (95% CI: 0.1896 to 1.0900)) concentrations are considered to be statistically significant. Dose–response analysis reflected the dynamic changes of male reproductive function caused by MC. Short-term exposure to MC-LR can affect the function of the male reproductive system in rodents and fish. Elevated dosage or extended exposure time may worsen the damage. Human-related research on MC-LR exposure is very necessary to protect health and the water environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xu Zhang ◽  
Tongtong Zhang ◽  
Xiaohan Ren ◽  
Xinglin Chen ◽  
ShangQian Wang ◽  
...  

Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.


1998 ◽  
Vol 156 (1) ◽  
pp. 23-34 ◽  
Author(s):  
GF Weinbauer ◽  
J Schubert ◽  
CH Yeung ◽  
G Rosiepen ◽  
E Nieschlag

Meiosis constitutes a crucial phase of spermatogenesis since the recombination of genetic information and production of haploid round spermatids need to be achieved. Although it is well established that gonadotrophic hormones are required for completion of the spermatogenic process, little is known about the dynamic and kinetic aspects of development of spermatocytes into spermatids and its endocrine control in the primate. In this study, S-phase germ cells were labelled using 5-bromodeoxyuridine (BrdU) incorporation and were then followed throughout meiosis under normal conditions and following GnRH antagonist (ANT)-induced gonadotrophin withdrawal in a nonhuman primate model, the cynomolgus monkey (Macaca fascicularis). Adult animals received either vehicle (VEH, n = 4) or the ANT cetrorelix (n = 5) throughout 25 days. On day 7 all animals received a bolus injection of BrdU. A biopsy was performed after 3 h, one testis was removed 9 days later (day 16 of treatment) and the other testis after 18 days (day 25 of treatment). Serum testosterone and inhibin levels, and testis weight were reduced (P < 0.05) by ANT treatment. BrdU localized to pachytene spermatocytes 9 days after BrdU and to round spermatids 18 days after BrdU in both groups, demonstrating that BrdU-labelled pachytene spermatocytes had undergone meiosis. Flow cytometric analysis revealed that the relative number and number per testis of BrdU-tagged 2C and 4C cells were reduced significantly (P < 0.05) within 16 days of ANT treatment. Numbers of 1C cells were lowered by day 25. The cell ratio for 1C:4C was similar with VEH and ANT (P > 0.05). These findings indicate that ANT reduced the number of cells available for meiosis but did not alter the rate of transition into round spermatids. Unexpectedly, however, the stage-dependent progression of BrdU-tagged round spermatids was significantly (P < 0.05) retarded under ANT as seen from the frequency of tubules containing BrdU-labelled round spermatids. The average duration of spermatogenic cycle was slightly prolonged (9.8 days in the VEH group and 10.8 days in the ANT group (P = 0.09)). Since no atypical germ cell associations could be found, it remains unclear whether this slight prolongation is entirely due to altered spermatid progression or whether earlier phases are affected. We conclude for the nonhuman primate that (1) BrdU-labelling of premeiotic germ cells is suitable for tracing their meiotic transition into postmeiotic cells, (2) unlike in the rat, gonadotrophin suppression initially affects premeiotic cell proliferation and thus the number of cells available for meiosis, (3) the meiotic process continues quantitatively despite gonadotrophin deficiency and (4) prolonged gonadotrophin deficiency might alter the timing of germ cell development.


Sign in / Sign up

Export Citation Format

Share Document