Zinc and selenium combination treatment protected diabetes-induced testicular and epididymal damage in rat

2020 ◽  
Vol 39 (9) ◽  
pp. 1235-1256 ◽  
Author(s):  
C Sahu ◽  
DK Dwivedi ◽  
GB Jena

Diabetes increases the possibility of germ cell damage, hypogonadism, and male infertility. Diabetic condition negatively impacts zinc (Zn) and selenium (Se) levels in the body. Zn and Se are among the most important trace elements involved in the regulation of redox reaction, antioxidants enzymes activities, and DNA expression in a germ cell. The present study aimed to elucidate the combined effects of Zn and Se treatment on diabetes-induced germ cell damage in male Sprague Dawley rats. Type 1 diabetes was induced by the single intraperitoneal (i.p.) injection of streptozotocin (55 mg/kg). Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) were administered daily for 8 consecutive weeks. All the animals were provided with normal feed and water throughout the study. The effects on germ cell damage were evaluated by body weight, feed-water intake, organ weight, sperm count, motility, sperm head morphology, biochemical analysis, histology, immunohistochemistry, halo assay, germ cell comet assay, testes terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, sperm TUNEL assay, serum protein pattern analysis, and subcellular analysis using transmission electron microscopy. Further, the expressions of nuclear erythroid-derived related factor 2, catalase, glutathione peroxidase 4, and glutathione peroxidase 5 were carried out to ascertain the mechanism of protection. The present results demonstrated that 8 weeks combined treatment of Zn (3 mg/kg, i.p.) and Se (0.5 mg/kg, i.p.) reduced diabetes-induced germ cell damage. This study further highlighted that Zn and Se combination treatment might be a better strategy for the germ cell protection in diabetes and deserve further investigation.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Juan G. Reyes ◽  
Jorge G. Farias ◽  
Sebastián Henríquez-Olavarrieta ◽  
Eva Madrid ◽  
Mario Parraga ◽  
...  

Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.


2020 ◽  
Vol 20 (7) ◽  
pp. 1010-1014 ◽  
Author(s):  
Dana Filatova ◽  
Christine Cherpak

Background: Hypersensitivity to nickel is a very common cause of allergic contact dermatitis since this metal is largely present in industrial and consumer products as well as in some commonly consumed foods, air, soil, and water. In nickel-sensitized individuals, a cell-mediated delayed hypersensitivity response results in contact to dermatitis due to mucous membranes coming in long-term contact with nickel-containing objects. This process involves the generation of reactive oxidative species and lipid peroxidation-induced oxidative damage. Immunologically, the involvement of T helper (h)-1 and Th-2 cells, as well as the reduced function of T regulatory cells, are of importance. The toxicity, mutagenicity, and carcinogenicity of nickel are attributed to the generation of reactive oxygen species and induction of oxidative damage via lipid peroxidation, which results in DNA damage. Objective: The aim of this research is to identify nutritionally actionable interventions that can intercept nickel-induced cell damage due to their antioxidant capacities. Conclusion: Nutritional interventions may be used to modulate immune dysregulation, thereby intercepting nickel-induced cellular damage. Among these nutritional interventions are a low-nickel diet and an antioxidant-rich diet that is sufficient in iron needed to minimize nickel absorption. These dietary approaches not only reduce the likelihood of nickel toxicity by minimizing nickel exposure but also help prevent oxidative damage by supplying the body with antioxidants that neutralize free radicals.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Gabriela Carrasco-Torres ◽  
Rafael Baltiérrez-Hoyos ◽  
Erik Andrade-Jorge ◽  
Saúl Villa-Treviño ◽  
José Guadalupe Trujillo-Ferrara ◽  
...  

The inflammatory condition of malignant tumors continually exposes cancer cells to reactive oxygen species, an oxidizing condition that leads to the activation of the antioxidant defense system. A similar activation occurs with glutathione production. This oxidant condition enables tumor cells to maintain the energy required for growth, proliferation, and evasion of cell death. The objective of the present study was to determine the effect on hepatocellular carcinoma cells of a combination treatment with maleic anhydride derivatives (prooxidants) and quercetin (an antioxidant). The results show that the combination of a prooxidant/antioxidant had a cytotoxic effect on HuH7 and HepG2 liver cancer cells, but not on either of two normal human epithelial cell lines or on primary hepatocytes. The combination treatment triggered apoptosis in hepatocellular carcinoma cells by activating the intrinsic pathway and causing S phase arrest during cell cycle progression. There is also clear evidence of a modification in cytoskeletal actin and nucleus morphology at 24 and 48 h posttreatment. Thus, the current data suggest that the combination of two anticarcinogenic drugs, a prooxidant followed by an antioxidant, can be further explored for antitumor potential as a new treatment strategy.


2021 ◽  
Vol 22 (1) ◽  
pp. 412
Author(s):  
Christopher L. Moore ◽  
Alena V. Savenka ◽  
Alexei G. Basnakian

Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay is a long-established assay used to detect cell death-associated DNA fragmentation (3’-OH DNA termini) by endonucleases. Because these enzymes are particularly active in the kidney, TUNEL is widely used to identify and quantify DNA fragmentation and cell death in cultured kidney cells and animal and human kidneys resulting from toxic or hypoxic injury. The early characterization of TUNEL as an apoptotic assay has led to numerous misinterpretations of the mechanisms of kidney cell injury. Nevertheless, TUNEL is becoming increasingly popular for kidney injury assessment because it can be used universally in cultured and tissue cells and for all mechanisms of cell death. Furthermore, it is sensitive, accurate, quantitative, easily linked to particular cells or tissue compartments, and can be combined with immunohistochemistry to allow reliable identification of cell types or likely mechanisms of cell death. Traditionally, TUNEL analysis has been limited to the presence or absence of a TUNEL signal. However, additional information on the mechanism of cell death can be obtained from the analysis of TUNEL patterns.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuang Li ◽  
Wenjuan Sun ◽  
Kai Zhang ◽  
Jiawei Zhu ◽  
Xueting Jia ◽  
...  

Abstract Background The immune system is one aspect of health that is affected by dietary selenium (Se) levels and selenoprotein expression. Spleen is an important immune organ of the body, which is directly involved in cellular immunity. However, there are limited reports on Se levels and spleen health. Therefore, this study established a Se-deficient pig model to investigate the mechanism of Se deficiency-induced splenic pathogenesis. Methods Twenty-four pure line castrated male Yorkshire pigs (45 days old, 12.50 ± 1.32 kg, 12 full-sibling pairs) were divided into two equal groups and fed Se-deficient diet (0.007 mg Se/kg) or Se-adequate diet (0.3 mg Se/kg) for 16 weeks. At the end of the trial, blood and spleen were collected to assay for erythroid parameters, the osmotic fragility of erythrocytes, the spleen index, histology, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) staining, Se concentrations, the selenogenome, redox status, and signaling related inflammation and apoptosis. Results Dietary Se deficiency decreased the erythroid parameters and increased the number of osmotically fragile erythrocytes (P < 0.05). The spleen index did not change, but hematoxylin and eosin and TUNEL staining indicated that the white pulp decreased, the red pulp increased, and splenocyte apoptosis occurred in the Se deficient group. Se deficiency decreased the Se concentration and selenoprotein expression in the spleen (P < 0.05), blocked the glutathione and thioredoxin antioxidant systems, and led to redox imbalance. Se deficiency activated the NF-κB and HIF-1α transcription factors, thus increasing pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-17, and TNF-α), decreasing anti-inflammatory cytokines (IL-10, IL-13, and TGF-β) and increasing expression of the downstream genes COX-2 and iNOS (P < 0.05), which in turn induced inflammation. In addition, Se-deficiency induced apoptosis through the mitochondrial pathway, upregulated apoptotic genes (Caspase3, Caspase8, and Bak), and downregulated antiapoptotic genes (Bcl-2) (P < 0.05) at the mRNA level, thus verifying the results of TUNEL staining. Conclusions These results indicated that Se deficiency induces spleen injury through the regulation of selenoproteins, oxidative stress, inflammation and apoptosis.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1208
Author(s):  
Mina Kim ◽  
Ji Yeong Kim ◽  
Hee Sun Yang ◽  
Jeong-Sook Choe ◽  
In Guk Hwang

Salvia plebeia has been used to treat a variety of inflammatory diseases, as well as colds and bronchitis. Macrophages have antioxidant defense mechanisms to cope with the intracellular reactive oxygen species (ROS) produced as part of the immune response. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 pathway in inflamed macrophages is an appealing target due to its protective effect against ROS-induced cell damage. In this study, nepetoidin B (NeB) was first isolated from S. plebeia and identified by nuclear magnetic resonance spectroscopy. NeB reduced pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) in LPS-activated RAW 264.7 cells by inhibiting the NF-κB signaling pathway. In the NeB-treated group, catalase and superoxide dismutase levels were significantly higher, and ROS expression decreased. By activating Nrf2 signaling, NeB enhanced HO-1 expression. Furthermore, when the cells were pretreated with tin protoporphyrin (an HO-1 inhibitor), the anti-inflammatory effects of NeB were reduced. Therefore, NeB may activate the Nrf2/ HO-1 pathway. These results reveal the NeB isolated from S. plebeia exerts anti-inflammatory effects by modulating NF-κB signaling and activating the Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 cells.


2021 ◽  
Vol 22 (11) ◽  
pp. 5648
Author(s):  
Takashi Yurube ◽  
Hiroaki Hirata ◽  
Masaaki Ito ◽  
Yoshiki Terashima ◽  
Yuji Kakiuchi ◽  
...  

The intervertebral disc is the largest avascular low-nutrient organ in the body. Thus, resident cells may utilize autophagy, a stress-response survival mechanism, by self-digesting and recycling damaged components. Our objective was to elucidate the involvement of autophagy in rat experimental disc degeneration. In vitro, the comparison between human and rat disc nucleus pulposus (NP) and annulus fibrosus (AF) cells found increased autophagic flux under serum deprivation rather in humans than in rats and in NP cells than in AF cells of rats (n = 6). In vivo, time-course Western blotting showed more distinct basal autophagy in rat tail disc NP tissues than in AF tissues; however, both decreased under sustained static compression (n = 24). Then, immunohistochemistry displayed abundant autophagy-related protein expression in large vacuolated disc NP notochordal cells of sham rats. Under temporary static compression (n = 18), multi-color immunofluorescence further identified rapidly decreased brachyury-positive notochordal cells with robust expression of autophagic microtubule-associated protein 1 light chain 3 (LC3) and transiently increased brachyury-negative non-notochordal cells with weaker LC3 expression. Notably, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive apoptotic death was predominant in brachyury-negative non-notochordal cells. Based on the observed notochordal cell autophagy impairment and non-notochordal cell apoptosis induction under unphysiological mechanical loading, further investigation is warranted to clarify possible autophagy-induced protection against notochordal cell disappearance, the earliest sign of disc degeneration, through limiting apoptosis.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


Reproduction ◽  
2011 ◽  
Vol 141 (5) ◽  
pp. 633-641 ◽  
Author(s):  
N P Leopardo ◽  
F Jensen ◽  
M A Willis ◽  
M B Espinosa ◽  
A D Vitullo

Apoptosis-dependent massive germ cell death is considered a constitutive trait of the developing mammalian ovary that eliminates 65–85% of the germinal tissue depending on the species. After birth and during adult lifetime, apoptotic activity moves from the germ cell proper to the somatic compartment, decimating germ cells through follicular atresia until the oocyte reserve is exhausted. In contrast, the South American rodent Lagostomus maximus shows suppressed apoptosis-dependent follicular atresia in the adult ovary, with continuous folliculogenesis and massive polyovulation, which finally exhausts the oocyte pool. The absence of follicular atresia in adult L. maximus might arise from a failure to move apoptosis from the germinal stratum to the somatic compartment after birth or being a constitutive trait of the ovarian tissue with no massive germ cell degeneration in the developing ovary. We tested these possibilities by analysing oogenesis, expression of germ cell-specific VASA protein, apoptotic proteins BCL2 and BAX, and DNA fragmentation by TUNEL assay in the developing ovary of L. maximus. Immunolabelling for VASA revealed a massive and widespread colonisation of the ovary and proliferation of germ cells organised in nests that disappeared at late development when folliculogenesis began. No sign of germ cell attrition was found at any time point. BCL2 remained positive throughout oogenesis, whereas BAX was slightly detected in early development. TUNEL assay was conspicuously negative throughout the development. These results advocate for an unrestricted proliferation of germ cells, without apoptosis-driven elimination, as a constitutive trait of L. maximus ovary as opposed to what is normally found in the developing mammalian ovary.


1984 ◽  
Vol 6 (3) ◽  
pp. 287-298 ◽  
Author(s):  
Gyula Ficsor ◽  
Gregory M. Oldford ◽  
Karen R. Loughlin ◽  
Brahma B. Panda ◽  
Janice L. Dubien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document