scholarly journals Three dimensional simulation of short channel effects in junction less FinFETs

2021 ◽  
Author(s):  
Seyed Akram Hosseini ◽  
Abdollah Eskandarian ◽  
Abbas ghadimi
2006 ◽  
Vol 05 (04n05) ◽  
pp. 541-545 ◽  
Author(s):  
DNAYNESH S. HAVALDAR ◽  
AMITAVA DASGUPTA ◽  
NANDITA DASGUPTA

In this work, the novel characteristics of a FinFET with dual-material gate (DMG) are explored theoretically using a 3D numerical simulator and compared with those of a single material gate (SMG) FinFET in terms of threshold voltage roll off, drain induced barrier lowering (DIBL) and the ratio of transconductance (gm) to drain conductance (gd). Our studies show that the DMG structure achieves simultaneous suppression of short channel effects (SCEs), enhancement in carrier transport efficiency and transconductance. Also, these features can be controlled by engineering the work function and length of gate material.


2018 ◽  
Vol 51 (6) ◽  
pp. 757
Author(s):  
Nguyen Dang Chien

This study investigates, by a two-dimensional simulation, the design optimization of a proposed 8 nm tunnel field-effect transistor (TFET) for low standby power (LSTP) applications utilizing graded Si/SiGe heterojunction with device parameters based on the ITRS specifications. The source Ge mole fraction should be designed approximately 0.8 because using lower Ge fractions causes severe short-channel effects while with higher values does not significantly improve the device performance but may create big difficulties in fabrication. Based on simultaneously optimizing the subthreshold swing, on- and off-currents, optimum values of source doping, drain doping and length of the proposed device are approximately 1020 cm-3,                1018 cm-3, and 10 nm, respectively. The 8 nm graded Si/SiGe TFET with optimized device parameters demonstrates high on-current of 360 μA/μm, low off-current of 0.5 pA/μm, low threshold voltage of 85 mV and very steep subthreshold swing of sub-10 mV/decade. The designed TFET with graded Si/SiGe heterojunction exhibits an excellent performance and makes it an attractive candidate for future LSTP technologies because of its reality to be fabricated with existing FET and SiGe growth techniques.


1993 ◽  
Vol 3 (9) ◽  
pp. 1719-1728
Author(s):  
P. Dollfus ◽  
P. Hesto ◽  
S. Galdin ◽  
C. Brisset

2007 ◽  
Vol 54 (8) ◽  
pp. 1943-1952 ◽  
Author(s):  
A. Tsormpatzoglou ◽  
C.A. Dimitriadis ◽  
R. Clerc ◽  
Q. Rafhay ◽  
G. Pananakakis ◽  
...  

1989 ◽  
Vol 36 (3) ◽  
pp. 522-528 ◽  
Author(s):  
S. Veeraraghavan ◽  
J.G. Fossum

Sign in / Sign up

Export Citation Format

Share Document