Weather Prediction in SHiELD: Effect from GFDL Cloud Microphysics Scheme Upgrade

2022 ◽  
Author(s):  
Linjiong Zhou ◽  
Lucas Harris ◽  
Jan-Huey Chen ◽  
Kun Gao ◽  
Huan Guo ◽  
...  
2020 ◽  
Author(s):  
Wanchen Wu ◽  
Wei Huang ◽  
Baode Chen

<p>Considering aerosol effects via microphysics parameterization is an imperative work in high-resolution numerical weather prediction. This paper uses two bulk microphysics parameterizations, Aerosol-Aware Thompson and CLR schemes, with the Weather and Research Forecast model to study the impacts of aerosols and microphysics scheme on an idealized supercell storm. Our results show that the implementation of aerosols can successfully modify the cloud droplet size and influence the subsequent warm-rain, mixed-phase, and accumulated precipitation. It implies that aerosols can make numerous differences to cloud microphysics properties and processes but the uncertainty in the magnitude of aerosol effects is huge because the two schemes are different from each other since the warm-rain process including CCN activation and rainwater formation. On the other hand, it is also found that the two schemes make tremendous differences in the rainfall pattern and storm dynamics due to the presence of graupel below the freezing level. The Thompson scheme has hail-like graupel which can fall below the freezing level to chill the air temperature effectively, intensify the downdraft, and enhance the uplifting on the front of cold pools. The mean graupel size represented by the two schemes plays a much more important role than the fall-speed formula for the dynamical feedbacks. Our results suggest that particle size is the core of a myriad of microphysics processes and highly associated with key cloud and dynamical signatures.</p>


2020 ◽  
Vol 20 (18) ◽  
pp. 10997-11024
Author(s):  
Hamish Gordon ◽  
Paul R. Field ◽  
Steven J. Abel ◽  
Paul Barrett ◽  
Keith Bower ◽  
...  

Abstract. Representing the number and mass of cloud and aerosol particles independently in a climate, weather prediction or air quality model is important in order to simulate aerosol direct and indirect effects on radiation balance. Here we introduce the first configuration of the UK Met Office Unified Model in which both cloud and aerosol particles have “double-moment” representations with prognostic number and mass. The GLObal Model of Aerosol Processes (GLOMAP) aerosol microphysics scheme, already used in the Hadley Centre Global Environmental Model version 3 (HadGEM3) climate configuration, is coupled to the Cloud AeroSol Interacting Microphysics (CASIM) cloud microphysics scheme. We demonstrate the performance of the new configuration in high-resolution simulations of a case study defined from the CLARIFY aircraft campaign in 2017 near Ascension Island in the tropical southern Atlantic. We improve the physical basis of the activation scheme by representing the effect of existing cloud droplets on the activation of new aerosol, and we also discuss the effect of unresolved vertical velocities. We show that neglect of these two competing effects in previous studies led to compensating errors but realistic droplet concentrations. While these changes lead only to a modest improvement in model performance, they reinforce our confidence in the ability of the model microphysics code to simulate the aerosol–cloud microphysical interactions it was designed to represent. Capturing these interactions accurately is critical to simulating aerosol effects on climate.


2003 ◽  
Vol 7 (6) ◽  
pp. 877-889 ◽  
Author(s):  
R. Benoit ◽  
N. Kouwen ◽  
W. Yu ◽  
S. Chamberland ◽  
P. Pellerin

Abstract. During the Special Observation Period (SOP, 7 September–15 November, 1999) of the Mesoscale Alpine Programme (MAP), the Canadian Mesoscale Compressible Community Model (MC2) was run in real time at a horizontal resolution of 3 km on a computational domain of 350☓300☓50 grid points, covering the whole of the Alpine region. The WATFLOOD model was passively coupled to the MC2; the former is an integrated set of computer programs to forecast flood flows, using all available data, for catchments with response times ranging from one hour to several weeks. The unique aspect of this contribution is the operational application of numerical weather prediction data to forecast flows over a very large, multinational domain. An overview of the system performance from the hydrometeorological aspect is presented, mostly for the real-time results, but also from subsequent analyses. A streamflow validation of the precipitation is included for large basins covering upper parts of the Rhine and the Rhone, and parts of the Po and of the Danube. In general, the MC2/WATFLOOD model underestimated the total runoff because of the under-prediction of precipitation by MC2 during the MAP SOP. After the field experiment, a coding error in the cloud microphysics scheme of MC2 explains this underestimation to a large extent. A sensitivity study revealed that the simulated flows reproduce the major features of the observed flow record for most of the flow stations. The experiment was considered successful because two out of three possible flood events in the Swiss-Italian border region were predicted correctly by data from the numerical weather models linked to the hydrological model and no flow events were missed. This study has demonstrated that a flow forecast from a coupled atmospheric-hydrological model can serve as a useful first alert and quantitative forecast. Keywords: mesoscale atmospheric model, hydrological model, flood forecasting, Alps


2018 ◽  
Vol 33 (6) ◽  
pp. 1681-1708 ◽  
Author(s):  
Thomas A. Jones ◽  
Patrick Skinner ◽  
Kent Knopfmeier ◽  
Edward Mansell ◽  
Patrick Minnis ◽  
...  

AbstractForecasts of high-impact weather conditions using convection-allowing numerical weather prediction models have been found to be highly sensitive to the selection of cloud microphysics scheme used within the system. The Warn-on-Forecast (WoF) project has developed a rapid-cycling, convection-allowing, data assimilation and forecasting system known as the NSSL Experimental WoF System for ensembles (NEWS-e), which is designed to utilize advanced cloud microphysics schemes. NEWS-e currently (2017–18) uses the double-moment NSSL variable density scheme (NVD), which has been shown to generate realistic representations of convective precipitation within the system. However, very little verification on nonprecipitating cloud features has been performed with this system. During the 2017 Hazardous Weather Testbed (HWT) experiment, an overestimation of the areal coverage of convectively generated cirrus clouds was observed. Changing the cloud microphysics scheme to Thompson generated more accurate cloud fields. This research undertook the task of improving the cloud analysis generated by NVD while maintaining its skill for other variables such as reflectivity. Adjustments to cloud condensation nuclei (CCN), fall speed, and collection efficiencies were made and tested over a set of six severe weather cases occurring during May 2017. This research uses an object-based verification approach in which objects of cold infrared brightness temperatures, high cloud-top pressures, and cloud water path are generated from model output and compared against GOES-13 observations. Results show that the modified NVD scheme generated much more skillful forecasts of cloud objects than the original formulation without having a negative impact on the skill of simulated composite reflectivity forecasts.


2020 ◽  
Author(s):  
Hamish Gordon ◽  
Paul R. Field ◽  
Steven J. Abel ◽  
Paul Barrett ◽  
Keith Bower ◽  
...  

Abstract. Representing the number and mass of cloud and aerosol particles independently in a climate, weather prediction or air quality model is important in order to simulate aerosol direct and indirect effects on radiation balance. Here we introduce the first configuration of the UK Met Office Unified Model in which both cloud and aerosol particles have double-moment representations with prognostic number and mass. The GLOMAP aerosol microphysics scheme, already used in the HadGEM3 climate configuration, is coupled to the CASIM cloud microphysics scheme. We demonstrate the performance of the new configuration in cloud-resolving simulations of a case study defined from the CLARIFY aircraft campaign in 2017 near Ascension Island in the tropical south Atlantic. We improve the physical basis of the activation scheme by representing the effect of existing cloud droplets on the activation of new aerosol, and we also attempt to account for the effect of unresolved vertical velocities. The first of these improvements should be applicable to the representation of aerosol activation in other microphysics schemes. While these changes lead only to a modest improvement in model performance, they reinforce our confidence in the ability of the model to simulate aerosol-cloud microphysical interactions. Capturing these interactions accurately is critical to simulating aerosol effects on climate.


2011 ◽  
Vol 50 (12) ◽  
pp. 2445-2459 ◽  
Author(s):  
Bjørn Egil Kringlebotn Nygaard ◽  
Jón Egill Kristjánsson ◽  
Lasse Makkonen

AbstractIn-cloud icing on aircraft and ground structures can be observed every winter in many countries. In extreme cases ice can cause accidents and damage to infrastructure such as power transmission lines, telecommunication towers, wind turbines, ski lifts, and so on. This study investigates the potential for predicting episodes of in-cloud icing at ground level using a state-of-the-art numerical weather prediction model. The Weather Research and Forecasting (WRF) model is applied, with attention paid to the model’s skill to explicitly predict the amount of supercooled cloud liquid water content (SLWC) at the ground level at different horizontal resolutions and with different cloud microphysics schemes. The paper also discusses how well the median volume droplet diameter (MVD) can be diagnosed from the model output. A unique dataset of direct measurements of SLWC and MVD at ground level on a hilltop in northern Finland is used for validation. A mean absolute error of predicted SLWC as low as 0.08 g m−3 is obtained when the highest model resolution is applied (grid spacing equal to 0.333 km), together with the Thompson microphysics scheme. The quality of the SLWC predictions decreases dramatically with decreasing model resolution, and a systematic difference in predictive skill is found between the cloud microphysics schemes applied. A comparison between measured and predicted MVD shows that when prescribing the droplet concentration equal to 250 cm−3 the model predicts MVDs ranging from 12 to 20 μm, which corresponds well to the measured range. However, the variation from case to case is not captured by the current cloud microphysics schemes.


2021 ◽  
Author(s):  
Gregor Köcher ◽  
Florian Ewald ◽  
Martin Hagen ◽  
Christoph Knote ◽  
Eleni Tetoni ◽  
...  

<p>The representation of microphysical processes in numerical weather prediction models remains a main source of uncertainty until today. To evaluate the influence of cloud microphysics parameterizations on numerical weather prediction, a convection permitting regional weather model setup has been established using 5 different microphysics schemes of varying complexity (double-moment, spectral bin, particle property prediction (P3)). A polarimetric radar forward operator (CR-SIM) has been applied to simulate radar signals consistent with the simulated particles. The performance of the microphysics schemes is analyzed through a statistical comparison of the simulated radar signals to radar measurements on a dataset of 30 convection days.</p> <p>The observational data basis is provided by two polarimetric research radar systems in the area of Munich, Germany, at C- and Ka-band frequencies and a complementary third polarimetric C-band radar operated by the German Weather Service. By measuring at two different frequencies, the<br />dual-wavelength ratio is derived that facilitates the investigation of the particle size evolution. Polarimetric radars provide in-cloud information about hydrometeor type and asphericity by measuring, e.g., the differential reflectivity ZDR.</p> <p>Within the DFG Priority Programme 2115 PROM, we compare the simulated polarimetric and dual-wavelength radar signals with radar observations of convective clouds. Deviations are found between the schemes and observations in ice and liquid phase, related to the treatment of particle size distributions. Apart from the P3 scheme, simulated reflectivities in the ice phase are too high. Dual-wavelength signatures demonstrate issues of most schemes to correctly represent ice particle size distributions. Comparison of polarimetric radar signatures reveal issues of all schemes except the spectral bin scheme to correctly represent rain particle size distributions. The polarimetric information is further exploited by applying a hydrometeor classification algorithm to obtain dominant hydrometeor classes. By comparing the simulated and observed distribution of hydrometeors, as well as the frequency, intensity and area of high impact weather situations (e.g., hail or heavy convective precipitation), the influence of cloud microphysics on the ability to correctly predict high impact weather situations is examined.</p>


2013 ◽  
Vol 13 (3) ◽  
pp. 1177-1192 ◽  
Author(s):  
C. Knote ◽  
D. Brunner

Abstract. Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (−30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass was increased by 10% on average. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5–1 μg m−3 (up to −2 μg m−3 in the Po Valley) while sulfate mass is increased by 1–1.5 μg m−3 on average (up to 2.5 μg m−3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i.e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system tends to underestimate the total wet deposited mass for the simulated case study.


2014 ◽  
Vol 7 (4) ◽  
pp. 1733-1766 ◽  
Author(s):  
D. Barahona ◽  
A. Molod ◽  
J. Bacmeister ◽  
A. Nenes ◽  
A. Gettelman ◽  
...  

Abstract. This work presents the development of a two-moment cloud microphysics scheme within version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation, and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid-scale vertical velocity distribution accounting for turbulence and gravity wave motion is also implemented. The new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model against satellite retrievals and in situ observations shows agreement of the simulated droplet and ice crystal effective radius, the ice mass mixing ratio and number concentration, and the relative humidity with respect to ice. When using the new microphysics, the fraction of condensate that remains as liquid follows a sigmoidal dependency with temperature, which is in agreement with observations and which fundamentally differs from the linear increase assumed in most models. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. The new microphysics tends to underestimate the coverage of persistent low-level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters. Significant sensitivity remains to variation in the dispersion of the ice crystal size distribution and the critical size for ice autoconversion. Despite these issues, the implementation of the new microphysics leads to a considerably improved and more realistic representation of cloud processes in GEOS-5, and allows the linkage of cloud properties to aerosol emissions.


Sign in / Sign up

Export Citation Format

Share Document