Functional properties of plant proteins Part IV. Foaming properties of modified proteins from faba beans

Nahrung/Food ◽  
1983 ◽  
Vol 27 (4) ◽  
pp. 335-350 ◽  
Author(s):  
K. D. Schwenke ◽  
E. J. Rauschal ◽  
K. D. Robowsky
2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Na Thi Ty Ngo ◽  
Fereidoon Shahidi

AbstractCamelina and flixweed (sophia) seed protein isolates were prepared using both the conventional extraction and ultrasonic-assisted extraction methods at 40 kHz for 20 min, and their functional properties investigated. SDS-PAGE showed that both ultrasound-assisted and conventional extractions resulted in a similar protein profile of the extract. The application of ultrasound significantly improved protein extraction/content and functional properties (water holding capacity, oil absorption capacity, emulsifying foaming properties, and protein solubility) of camelina protein isolate and sophia protein isolate. The water-holding and oil absorption capacities of sophia protein isolate were markedly higher than those of camelina protein isolate. These results suggest that camelina protein isolate and sophia protein isolate may serve as natural functional ingredients in the food industry. Graphical Abstract


2016 ◽  
Vol 33 (No. 5) ◽  
pp. 474-479 ◽  
Author(s):  
J. Ren ◽  
Ch. Song ◽  
P. Wang ◽  
S. Li ◽  
N. Kopparapu ◽  
...  

The structural and functional properties such as solubility, emulsifying properties, foaming properties, oil binding capacity, and surface hydrophobicity of sunflower 11S globulin hydrolysates generated by Alcalase at hydrolysis time of 30, 60, 90, and 120 min were evaluated. Circular dichroism analysis showed the hydrolysates possessed a decreased α-helix and β-structure. The hydrolysates exhibited lower surface hydrophobicity. Hydrolysates with shorter hydrolysis time showed the higher emulsifying activity index, but the same emulsion stability and oil binding capacity compared to the original 11S globulin. The longer hydrolysis resulted in lower foaming and emulsion stability. Thus it was demonstrated that by controlling the hydrolysis time of sunflower 11S globulin, hydrolysate with a desirable functional properties can be obtained.


2010 ◽  
Vol 16 (5) ◽  
pp. 451-458 ◽  
Author(s):  
J.G. Rocha-Estrada ◽  
J.H. Córdova-Murueta ◽  
F.L. García-Carreno

Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests.


2021 ◽  
Vol 33 (2) ◽  
pp. 142-155
Author(s):  
Mine Köstekli Büyükcan ◽  
Sibel Karakaya

Emulsifying and foaming properties of plant and animal-sourced proteins; wheat protein hydrolysates (WP1, WP2, and WP3), potato protein isolates (PP1, PP2), pea proteins isolates (PeP1, PeP2), whey protein concentrate (WPC), and buttermilk powder (BMP) were compared with the egg white powder (EWP) and egg yolk powder (EYP). Foaming capacity, stability, emulsion activity, stability, heat stability, morphology, and electrophoretic protein profiles were determined. The proteins representing competitive emulsifying functions were PeP1, WPC, and BMP. Heat treatment for 30 min at 80°C remarkably reduced the emulsion activity (EA) of EYP. Our findings demonstrated that patatin-rich potato protein (PP1), an allergen-free and vegan option, has great potential to replace the foaming function of the egg white. The relationship between the protein profiles of the samples and their functional properties was further discussed in detail.


LWT ◽  
2017 ◽  
Vol 86 ◽  
pp. 25-30 ◽  
Author(s):  
Zeynep Akin ◽  
Tulay Ozcan

2013 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Normah Ismail ◽  
Najihah Shukor ◽  
Zainal Samicho

Silver catfish (Pangasius sutchi) skin gelatin was extracted to determine the effects of extraction time on the functional properties of the gelatin in terms of solubility, protein solubility as a function of pH and sodium chloride concentration, emulsifying capacity and stability, water holding capacity, fat binding capacities and foaming properties. Silver catfish skins were washed in sodium chloride (NaCl) solution prior to pre-treatment in sodium hydroxide (NaOH) and acetic acid solution. Gelatin was extracted at 50ºC for 6, 8, 10 and 12 hours extraction time followed by freeze drying. The extraction of silver catfish skin gelatin at 50 ºC for 12 hours was more effective than extraction at 6, 8 and 10 hours where the gelatin was characterized by higher emulsifying capacity (52.63%), emulsifying stability (47.83%), water holding capacity (31.78 mL/g), fat binding capacities (54.76%), foaming capacity (41.47 mL) and foaming stability (56.42%) than gelatins extracted at other extraction time. The longer the extraction time, the better the functional properties of the gelatin. Based on its good functional properties, silver catfish skin gelatin may be useful in various food applications such as soups, sauces and gravies.


Sign in / Sign up

Export Citation Format

Share Document