scholarly journals Functional network estimation using multigraph learning with application to brain maturation study

2021 ◽  
Author(s):  
Junqi Wang ◽  
Li Xiao ◽  
Wenxing Hu ◽  
Gang Qu ◽  
Tony W. Wilson ◽  
...  
2017 ◽  
Vol 11 ◽  
Author(s):  
Yuhui Du ◽  
Dongdong Lin ◽  
Qingbao Yu ◽  
Jing Sui ◽  
Jiayu Chen ◽  
...  

ASHA Leader ◽  
2009 ◽  
Vol 14 (5) ◽  
pp. 14-17 ◽  
Author(s):  
Anu Sharma ◽  
Amy Nash

2019 ◽  
Vol 25 (21) ◽  
pp. 2375-2393 ◽  
Author(s):  
Yun Yuan ◽  
Chunyun Wu ◽  
Eng-Ang Ling

Background: Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. Methods: Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. Results: Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. Conclusion: Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.


Author(s):  
Susan M. Sawyer ◽  
George C. Patton

This chapter describes how the profile of physical and mental health and well-being changes across adolescence. The biological context of healthy adolescent growth and development is reviewed, including secular patterns of puberty and brain maturation. The structural and social determinants of adolescent health are then described. Adolescent health outcomes, including patterns of risk behaviors, emerge from the interaction between biological influences and social health determinants. Estimates of mortality and disability-adjusted life years are used to describe three patterns of adolescent health and well-being that vary by age, sex, and national wealth. Globally, the burden of disease increases across adolescence, varying markedly between and within countries. Comprehensive, multisectoral, evidence-informed actions are required that match these conspicuous adolescent health problems, emerging health risks, and major social determinants. Such actions, including quality education and health services, differ greatly from those that benefit younger children yet have similarly high benefit–cost ratios.


Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Akiko Ando ◽  
Hidenobu Ohta ◽  
Yuko Yoshimura ◽  
Machiko Nakagawa ◽  
Yoko Asaka ◽  
...  

AbstractOur recent study on full-term toddlers demonstrated that daytime nap properties affect the distribution ratio between nap and nighttime sleep duration in total sleep time but does not affect the overall total amount of daily sleep time. However, there is still no clear scientific consensus as to whether the ratio between naps and nighttime sleep or just daily total sleep duration itself is more important for healthy child development. In the current study, to gain an answer to this question, we examined the relationship between the sleep properties and the cognitive development of toddlers born prematurely using actigraphy and the Kyoto scale of psychological development (KSPD) test. 101 premature toddlers of approximately 1.5 years of age were recruited for the study. Actigraphy units were attached to their waist with an adjustable elastic belt for 7 consecutive days and a child sleep diary was completed by their parents. In the study, we found no significant correlation between either nap or nighttime sleep duration and cognitive development of the preterm toddlers. In contrast, we found that stable daily wake time was significantly associated with better cognitive development, suggesting that sleep regulation may contribute to the brain maturation of preterm toddlers.


2021 ◽  
pp. 1-14
Author(s):  
Jie Huang ◽  
Paul Beach ◽  
Andrea Bozoki ◽  
David C. Zhu

Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.


Sign in / Sign up

Export Citation Format

Share Document