EFFECTS OF CANAL AUTOMATION ON REDUCING GROUNDWATER EXTRACTION WITHIN IRRIGATION DISTRICTS : CASE STUDY OF QAZVIN IRRIGATION DISTRICT †

2019 ◽  
Vol 69 (1) ◽  
pp. 11-24
Author(s):  
Mohsen Hosseini Jolfan ◽  
Seied Mehdy Hashemy Shahdany ◽  
Saman Javadi ◽  
Iman Mallakpour ◽  
Aminreza Neshat
Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 692
Author(s):  
Boyu Mi ◽  
Haorui Chen ◽  
Shaoli Wang ◽  
Yinlong Jin ◽  
Jiangdong Jia ◽  
...  

The water movement research in irrigation districts is important for food production. Many hydrological models have been proposed to simulate the water movement on the regional scale, yet few of them have comprehensively considered processes in the irrigation districts. A novel physically based distributed model, the Irrigation Districts Model (IDM), was constructed in this study to address this problem. The model combined the 1D canal and ditch flow, the 1D soil water movement, the 2D groundwater movement, and the water interactions among these processes. It was calibrated and verified with two-year experimental data from Shahaoqu Sub-Irrigation Area in Hetao Irrigation District. The overall water balance error is 2.9% and 1.6% for the two years, respectively. The Nash–Sutcliffe efficiency coefficient (NSE) of water table depth and soil water content is 0.72 and 0.64 in the calibration year and 0.68 and 0.64 in the verification year. The results show good correspondence between the simulation and observation. It is practicable to apply the model in water movement research of irrigation districts.


2021 ◽  
Author(s):  
Xinjian Guan ◽  
Qiongying Du ◽  
Wenge Zhang ◽  
Baoyong Wang

Abstract Establishing and perfecting the water rights system is an important way to alleviate the shortage of water resources and realize the optimal allocation of water resources. Agriculture is an important user of water in various water-consumption industries, the confirmation of water rights in irrigation districts to farmers is the inevitable requirement for implementing fine irrigation in agricultural production. In this paper, a double-level water rights allocation model of national canals – farmer households in irrigation district is established. It takes into account the current water consumption of the canal system, the future water-saving potential and the constraint of total amount control at the canal level. It takes into account the asymmetric information of farmer households’ population and irrigation area at the farmer household level. Furthermore, the Gini coefficient method is used to construct the water rights allocation model among farmer households based on the principle of fairness. Finally, Wulanbuhe Irrigation Area in the Hetao Irrigation Area of Inner Mongolia is taken as an example. The results show that the allocated water rights of the national canals in the irrigation district are less than the current because of water-saving measures and water rights of farmer household get compensation or cut respectively. The research has fully tapped the water-saving potential of irrigation districts, refined the distribution of water rights of farmers and can provide a scientific basis for the development of water rights allocation in irrigation districts and water rights transactions between farmers.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2668
Author(s):  
Yujiang Xiong ◽  
Zhenyang Liu ◽  
Fengli Liu ◽  
Niannian Yuan ◽  
Haolong Fu

Flat, low-lying agricultural areas such as irrigation districts in southern China have been increasingly vulnerable to flood inundation disasters because of the increased runoff associated with urbanization and climate change. In this study, we developed a waterlogging process simulation model comprising two parts: runoff generation module and runoff confluence module. An improved tank model and hydrodynamic model based on Saint–Venant equations were adopted in the runoff generation and confluence module, respectively. The results show that the model’s relative error and root mean square error are 2.1% and 0.17 mm/h, and the Nash coefficient of the model is 0.91. The relative error of river level simulation was within 5%, and the Nash coefficient was higher than 0.9. The proposed waterlogging simulation model could be a valuable tool for describing the process of waterlogging generation, accumulation, and confluence in the studied irrigation district or other regions with similar climatic conditions.


2019 ◽  
Vol 11 (19) ◽  
pp. 5350 ◽  
Author(s):  
Chang Liu ◽  
Zhanyu Zhang ◽  
Shuya Liu ◽  
Qiaoyuan Liu ◽  
Baoping Feng ◽  
...  

Agriculture is one of the largest consumers of water and energy. This paper evaluated the agricultural sustainability of the Chenmengquan irrigation district of China based on the water–energy–food nexus. One objective weighting method and one subjective weighting method were integrated, based on game theory, and a matter–element model was constructed to evaluate agricultural sustainability for the research region. The sensitivity of each index to the evaluation class was also analyzed. The results showed that agricultural sustainability was moderate in 2006–2012 and high in 2012–2015. The indexes, which represent water-use efficiency and yield per unit area of crops, had higher sensitivities in the context of the present case study. The results also indicated that agricultural sustainability had a comparatively positive trend between 2012 and 2015, and that pesticide utilization was the most important issue for agricultural sustainability. The approach of using the combination of a weighting method, based upon game theory, and the use of the matter–element model provides a guide for the evaluation of agricultural sustainability.


2018 ◽  
Vol 204 ◽  
pp. 17-27 ◽  
Author(s):  
J. García Morillo ◽  
A. McNabola ◽  
E. Camacho ◽  
P. Montesinos ◽  
J.A. Rodríguez Díaz

2020 ◽  
Vol 153 ◽  
pp. 02003
Author(s):  
Putu Edi Yastika ◽  
Norikazu Shimizu ◽  
Ni Nyoman Pujianiki ◽  
I Gede Rai Maya Temaja ◽  
I Nyoman Gede Antara ◽  
...  

Numerous cities around the world are facing the problem of land subsidence. In many cases, it is the excessive groundwater extraction to meet human needs that leads to this subsidence. Since land subsidence rates are very slow (a few centimeters per year), the subsidence usually remains unnoticed until it has progressed to the point of causing severe damage to buildings, houses, and/or other infrastructures. Therefore, it is very important to detect the presence of subsidence in advance. In this study, screening for the presence of land subsidence in the city of Denpasar, Bali, Indonesia is conducted. The Sentinel-1A/B SAR dataset, taken from October 2014 to June 2019, is processed using the SBAS DInSAR method. Subsidence is found in the districts of Denpasar Selatan, Denpasar Barat, and Kuta, which falls in the range of -100 mm to -200 mm in an area of about 93.03 ha. All the extracted points of interest show the subsidence having linear behavior. The spatio-temporal behavior of the subsidence in Denpasar is presented clearly. However, the mechanism and the deriving factors of the subsidence remain unclear. Therefore, further studies are needed.


2020 ◽  
Author(s):  
Felipe Sierra ◽  
Jorge Sanabria ◽  
Gerald Corzo ◽  
Germán Santos

<p>Reservoir operation has been a task that always relate to integrated water resources concepts, the rules of such systems require to adapt to changes in the uses of water or in their prioritization. The storage body of La Copa reservoir, located in the upper Chicamocha river basin in Colombia was originally built with the objective of mitigating the floods over the upper Chicamocha valley. However, an irrigation district was latter established, with the objective of supplying water to farmers. This study presents the analysis and optimization of operational rules to minimize the likelihood of floods and shortages for the irrigation district. This is done by contemplating the uncertainty in the hydrological system.</p><p>A methodology is developed to obtain the optimal management and operation of the reservoir, aiming at reducing droughts and flood, which will end up in a regulated basins. A simulation model of the reservoir using the HEC-ResSim tool was used to aim at an optimal guide curve. The guide curve in this study is the base for operational decisions. A continuous simulation hydrological model using the HEC-HMS tool. The model was calibrated using annual series of daily flows as input into the reservoir model.  A two-dimensional hydrodynamic model using (HEC-RAS 2D) was used to test the results of regulation through the comparison of the simulations of the current and optimal regulation conditions.  Several guide curves were developed for the evaluation of the operation. Four of them among are selected and tested using the HEC-ResSim model through the quantification of the minimum and maximum volumes discharge failures. Finally, the guide curve with the least number of failures was selected as the one that provides the best system operation. The benefits of the selected guide curve were verified by the transit of the regulated hydrographs in the 2D hydraulic model. The simulation was carried out in the most period in terms of flows and maximum rainfall, from April 06 to May 15, 2011. The period between April 15 and 21 has the highest flow through the critical sector. On the other hand, unregulated conditions were evaluated using the flows of the hydrological model. It is found that the channel presents a notable improvement, in the simulation of April 15, through the discharges made in a controlled manner from the La Copa reservoir. The methodology presents a simple and practical way to obtain relative optimal operational rules for a multipurpose storage.</p>


Sign in / Sign up

Export Citation Format

Share Document