Toxicity of imine-iminium dyes and pigments: electron transfer, radicals, oxidative stress and other physiological effects

2014 ◽  
Vol 34 (8) ◽  
pp. 825-834 ◽  
Author(s):  
Peter Kovacic ◽  
Ratnasamy Somanathan
2019 ◽  
Vol 295 (4) ◽  
pp. 981-993 ◽  
Author(s):  
Laura Tempelhagen ◽  
Anita Ayer ◽  
Doreen E. Culham ◽  
Roland Stocker ◽  
Janet M. Wood

Ubiquinone 8 (coenzyme Q8 or Q8) mediates electron transfer within the aerobic respiratory chain, mitigates oxidative stress, and contributes to gene expression in Escherichia coli. In addition, Q8 was proposed to confer bacterial osmotolerance by accumulating during growth at high osmotic pressure and altering membrane stability. The osmolyte trehalose and membrane lipid cardiolipin accumulate in E. coli cells cultivated at high osmotic pressure. Here, Q8 deficiency impaired E. coli growth at low osmotic pressure and rendered growth osmotically sensitive. The Q8 deficiency impeded cellular O2 uptake and also inhibited the activities of two proton symporters, the osmosensing transporter ProP and the lactose transporter LacY. Q8 supplementation decreased membrane fluidity in liposomes, but did not affect ProP activity in proteoliposomes, which is respiration-independent. Liposomes and proteoliposomes prepared with E. coli lipids were used for these experiments. Similar oxygen uptake rates were observed for bacteria cultivated at low and high osmotic pressures. In contrast, respiration was dramatically inhibited when bacteria grown at the same low osmotic pressure were shifted to high osmotic pressure. Thus, respiration was restored during prolonged growth of E. coli at high osmotic pressure. Of note, bacteria cultivated at low and high osmotic pressures had similar Q8 concentrations. The protection of respiration was neither diminished by cardiolipin deficiency nor conferred by trehalose overproduction during growth at low osmotic pressure, but rather might be achieved by Q8-independent respiratory chain remodeling. We conclude that osmotolerance is conferred through Q8-independent protection of respiration, not by altering physical properties of the membrane.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 826
Author(s):  
Noriyuki Nagahara

Glutaredoxin (EC 1.15–1.21) is known as an oxidoreductase that protects cysteine residues within proteins against oxidative stress. Glutaredoxin catalyzes an electron transfer reaction that donates an electron to substrate proteins in the reducing system composed of glutaredoxin, glutathione, glutathione reductase, and nicotinamide-adenine dinucleotide phosphate (reduced form). 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2) is a cysteine enzyme that catalyzes transsulfuration, and glutaredoxin activates 3-mercaptopyruvate sulfurtransferase in the reducing system. Interestingly, even when glutathione or glutathione reductase was absent, 3-mercaptopyruvate sulfurtransferase activity increased, probably because reduced glutaredoxin was partly present and able to activate 3-mercaptopyruvate sulfurtransferase until depletion. A study using mutant Escherichia coli glutaredoxin1 (Cys14 is the binding site of glutathione and was replaced with a Ser residue) confirmed these results. Some inconsistency was noted, and glutaredoxin with higher redox potential than either 3-mercaptopyruvate sulfurtransferase or glutathione reduced 3-mercaptopyruvate sulfurtransferase. However, electron-transfer enzymatically proceeded from glutaredoxin to 3-mercaptopyruvate sulfurtransferase.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Joseph J. Porter ◽  
Ryan A. Mehl

Posttranslational modifications resulting from oxidation of proteins (Ox-PTMs) are present intracellularly under conditions of oxidative stress as well as basal conditions. In the past, these modifications were thought to be generic protein damage, but it has become increasingly clear that Ox-PTMs can have specific physiological effects. It is an arduous task to distinguish between the two cases, as multiple Ox-PTMs occur simultaneously on the same protein, convoluting analysis. Genetic code expansion (GCE) has emerged as a powerful tool to overcome this challenge as it allows for the site-specific incorporation of an Ox-PTM into translated protein. The resulting homogeneously modified protein products can then be rigorously characterized for the effects of individual Ox-PTMs. We outline the strengths and weaknesses of GCE as they relate to the field of oxidative stress and Ox-PTMs. An overview of the Ox-PTMs that have been genetically encoded and applications of GCE to the study of Ox-PTMs, including antibody validation and therapeutic development, is described.


2013 ◽  
Vol 305 (2) ◽  
pp. R95-R97 ◽  
Author(s):  
Wichaporn Lerdweeraphon ◽  
James Michael Wyss ◽  
Thidarut Boonmars ◽  
Sanya Roysommuti

Perinatal exposure to taurine (a β-amino acid) can alter adult physiological functions, including arterial pressure, hormonal and renal functions. Whereas perinatal taurine supplementation appears to have only minor effects on adult physiology, perinatal taurine depletion is associated with multiple adverse health effects, especially in animals postnatally exposed to other insults. New studies indicate that the mechanism for many of the physiological effects of taurine is related to the antioxidant activity of taurine. Thus the perinatal taurine depletion leads to oxidative stress in adult animals. It is likely that perinatal taurine depletion increases oxidative stress throughout life and that the early life taurine depletion leads to perinatal, epigenetic programming that impacts adult physiological function.


Sign in / Sign up

Export Citation Format

Share Document