Polyethyleneimine‐anchored liposomes as scavengers for improving the efficiency of protein‐bound uremic toxin clearance during dialysis

Author(s):  
Yuqi Shen ◽  
Yue Shen ◽  
Jiaolun Li ◽  
Feng Ding ◽  
Yifeng Wang
Keyword(s):  
Author(s):  
Ying Li ◽  
Jing Yan ◽  
Minjia Wang ◽  
Jing Lv ◽  
Fei Yan ◽  
...  

AbstractEvidence has been shown that indoxyl sulfate (IS) could impair kidney and cardiac functions. Moreover, macrophage polarization played important roles in chronic kidney disease and cardiovascular disease. IS acts as a nephron-vascular toxin, whereas its effect on macrophage polarization during inflammation is still not fully elucidated. In this study, we aimed to investigate the effect of IS on macrophage polarization during lipopolysaccharide (LPS) challenge. THP-1 monocytes were incubated with phorbol 12-myristate-13-acetate (PMA) to differentiate into macrophages, and then incubated with LPS and IS for 24 h. ELISA was used to detect the levels of TNFα, IL-6, IL-1β in THP-1-derived macrophages. Western blot assay was used to detect the levels of arginase1 and iNOS in THP-1-derived macrophages. Percentages of HLA-DR-positive cells (M1 macrophages) and CD206-positive cells (M2 macrophages) were detected by flow cytometry. IS markedly increased the production of the pro-inflammatory factors TNFα, IL-6, IL-1β in LPS-stimulated THP-1-derived macrophages. In addition, IS induced M1 macrophage polarization in response to LPS, as evidenced by the increased expression of iNOS and the increased proportion of HLA-DR+ macrophages. Moreover, IS downregulated the level of β-catenin, and upregulated the level of YAP in LPS-stimulated macrophages. Activating β-catenin signaling or inhibiting YAP signaling suppressed the IS-induced inflammatory response in LPS-stimulated macrophages by inhibiting M1 polarization. IS induced M1 macrophage polarization in LPS-stimulated macrophages via inhibiting β-catenin and activating YAP signaling. In addition, this study provided evidences that activation of β-catenin or inhibition of YAP could alleviate IS-induced inflammatory response in LPS-stimulated macrophages. This finding may contribute to the understanding of immune dysfunction observed in chronic kidney disease and cardiovascular disease.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 274
Author(s):  
Iwona Filipska ◽  
Agata Winiarska ◽  
Monika Knysak ◽  
Tomasz Stompór

Chronic kidney disease (CKD) affects more than 10% of the world population and leads to excess morbidity and mortality (with cardiovascular disease as a leading cause of death). Vascular calcification (VC) is a phenomenon of disseminated deposition of mineral content within the media layer of arteries preceded by phenotypic changes in vascular smooth muscle cells (VSMC) and/or accumulation of mineral content within the atherosclerotic lesions. Medial VC results in vascular stiffness and significantly contributes to increased cardio-vascular (CV) morbidity, whereas VC of plaques may rather increase their stability. Mineral and bone disorders of CKD (CKD-MBD) contribute to VC, which is further aggravated by accumulation of uremic toxins. Both CKD-MBD and uremic toxin accumulation affect not only patients with advanced CKD (glomerular filtration rate (GFR) less than 15 mL/min./1.72 m2, end-stage kidney disease) but also those on earlier stages of a disease. The key uremic toxins that contribute to VC, i.e., p-cresyl sulphate (PCS), indoxyl sulphate (IS) and trimethylamine-N-oxide (TMAO) originate from bacterial metabolism of gut microbiota. All mentioned toxins promote VC by several mechanisms, including: Transdifferentiation and apoptosis of VSMC, dysfunction of endothelial cells, oxidative stress, interaction with local renin–angiotensin–aldosterone system or miRNA profile modification. Several attractive methods of gut microbiota manipulations have been proposed in order to modify their metabolism and to limit vascular damage (and VC) triggered by uremic toxins. Unfortunately, to date no such method was demonstrated to be effective at the level of “hard” patient-oriented or even clinically relevant surrogate endpoints.


2021 ◽  
Vol 22 (12) ◽  
pp. 6270
Author(s):  
Chia-Ter Chao ◽  
Shih-Hua Lin

The accumulation of uremic toxins (UTs) is a prototypical manifestation of uremic milieu that follows renal function decline (chronic kidney disease, CKD). Frailty as a potential outcome-relevant indicator is also prevalent in CKD. The intertwined relationship between uremic toxins, including small/large solutes (phosphate, asymmetric dimethylarginine) and protein-bound ones like indoxyl sulfate (IS) and p-cresyl sulfate (pCS), and frailty pathogenesis has been documented recently. Uremic toxins were shown in vitro and in vivo to induce noxious effects on many organ systems and likely influenced frailty development through their effects on multiple preceding events and companions of frailty, such as sarcopenia/muscle wasting, cognitive impairment/cognitive frailty, osteoporosis/osteodystrophy, vascular calcification, and cardiopulmonary deconditioning. These organ-specific effects may be mediated through different molecular mechanisms or signal pathways such as peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), mitogen-activated protein kinase (MAPK) signaling, aryl hydrocarbon receptor (AhR)/nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), Runt-related transcription factor 2 (RUNX2), bone morphogenic protein 2 (BMP2), osterix, Notch signaling, autophagy effectors, microRNAs, and reactive oxygen species induction. Anecdotal clinical studies also suggest that frailty may further accelerate renal function decline, thereby augmenting the accumulation of UTs in affected individuals. Judging from these threads of evidence, management strategies aiming for uremic toxin reduction may be a promising approach for frailty amelioration in patients with CKD. Uremic toxin lowering strategies may bear the potential of improving patients’ outcomes and restoring their quality of life, through frailty attenuation. Pathogenic molecule-targeted therapeutics potentially disconnect the association between uremic toxins and frailty, additionally serving as an outcome-modifying approach in the future.


2019 ◽  
Vol 84 (1) ◽  
pp. 2-8 ◽  
Author(s):  
Kensei Taguchi ◽  
Bertha C. Elias ◽  
Craig R. Brooks ◽  
Seiji Ueda ◽  
Kei Fukami

Author(s):  
Raymond Vanholder ◽  
Angel Argiles ◽  
Joachim Jankowski ◽  

Abstract The uremic syndrome is a complex clinical picture developing in the advanced stages of chronic kidney disease (CKD) resulting in a myriad of complications and a high early mortality. This picture is to a significant extent defined by retention of metabolites and peptides that with a preserved kidney function are excreted or degraded by the kidneys. In as far as those solutes have a negative biological/biochemical impact, they are called uremic toxins. Here, we describe the historical evolution of the scientific knowledge about uremic toxins and the role played in this process by the European Uremic Toxin Work Group (EUTox) during the last two decades. The earliest knowledge about a uremic toxin goes back to the early 17th century when the existence of what later would appear to be urea was recognized. It cost about two further centuries to better define the role of urea and its link to kidney failure and one more century to identify the relevance of post-translational modifications caused by urea such as carbamoylation. The knowledge progressively extended, especially from 1980 on, by the identification of more and more toxins and their adverse biological/biochemical impact. Progress of knowledge was paralleled and impacted by evolution of dialysis strategies. The last two decades, when Insights grew exponentially, coincides with the foundation and activity of EUTox. In the final section we summarize the role and accomplishments of EUTox and the part it is likely to play in future action, which should be organized around focus points like biomarker and potential target identification, intestinal generation, toxicity mechanisms and their correction, kidney and extracorporeal removal, patient-oriented outcomes, and toxin characteristics in acute kidney injury and transplantation.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 936
Author(s):  
Chien-Lin Lu ◽  
Cai-Mei Zheng ◽  
Kuo-Cheng Lu ◽  
Min-Tser Liao ◽  
Kun-Lin Wu ◽  
...  

The accumulation of the uremic toxin indoxyl sulfate (IS) induces target organ damage in chronic kidney disease (CKD) patients, and causes complications including cardiovascular diseases, renal osteodystrophy, muscle wasting, and anemia. IS stimulates reactive oxygen species (ROS) production in CKD, which impairs glomerular filtration by a direct cytotoxic effect on the mesangial cells. IS further reduces antioxidant capacity in renal proximal tubular cells and contributes to tubulointerstitial injury. IS-induced ROS formation triggers the switching of vascular smooth muscular cells to the osteoblastic phenotype, which induces cardiovascular risk. Low-turnover bone disease seen in early CKD relies on the inhibitory effects of IS on osteoblast viability and differentiation, and osteoblastic signaling via the parathyroid hormone. Excessive ROS and inflammatory cytokine releases caused by IS directly inhibit myocyte growth in muscle wasting via myokines’ effects. Moreover, IS triggers eryptosis via ROS-mediated oxidative stress, and elevates hepcidin levels in order to prevent iron flux in circulation in renal anemia. Thus, IS-induced oxidative stress underlies the mechanisms in CKD-related complications. This review summarizes the underlying mechanisms of how IS mediates oxidative stress in the pathogenesis of CKD’s complications. Furthermore, we also discuss the potential role of oral AST-120 in attenuating IS-mediated oxidative stress after gastrointestinal adsorption of the IS precursor indole.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Chih-Yu Yang ◽  
Ting-Wen Chen ◽  
Wan-Lun Lu ◽  
Shih-Shin Liang ◽  
Hsien-Da Huang ◽  
...  

Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.


Sign in / Sign up

Export Citation Format

Share Document