scholarly journals The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation

2012 ◽  
Vol 227 (6) ◽  
pp. 2677-2685 ◽  
Author(s):  
Fengchang Zhu ◽  
Michael S. Friedman ◽  
Weijun Luo ◽  
Peter Woolf ◽  
Kurt D. Hankenson
2003 ◽  
Vol 44 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Renny Franceschi ◽  
Guozhi Xiao ◽  
Di Jiang ◽  
Rajaram Gopalakrishnan ◽  
Shuying Yang ◽  
...  

2005 ◽  
Vol 25 (5) ◽  
pp. 1971-1979 ◽  
Author(s):  
Kenji Hata ◽  
Riko Nishimura ◽  
Mio Ueda ◽  
Fumiyo Ikeda ◽  
Takuma Matsubara ◽  
...  

ABSTRACT Although both osteoblasts and adipocytes have a common origin, i.e., mesenchymal cells, the molecular mechanisms that define the direction of two different lineages are presently unknown. In this study, we investigated the role of a transcription factor, CCAAT/enhancer binding protein β (C/EBPβ), and its isoform in the regulation of balance between osteoblast and adipocyte differentiation. We found that C/EBPβ, which is induced along with osteoblast differentiation, promotes the differentiation of mesenchymal cells into an osteoblast lineage in cooperation with Runx2, an essential transcription factor for osteogenesis. Surprisingly, an isoform of C/EBPβ, liver-enriched inhibitory protein (LIP), which lacks the transcriptional activation domain, stimulates transcriptional activity and the osteogenic action of Runx2, although LIP inhibits adipogenesis in a dominant-negative fashion. Furthermore, LIP physically associates with Runx2 and binds to the C/EBP binding element present in the osteocalcin gene promoter. These data indicate that LIP functions as a coactivator for Runx2 and preferentially promotes the osteoblast differentiation of mesenchymal cells. Thus, identification of a novel role of the C/EBPβ isoform provides insight into the molecular basis of the regulation of osteoblast and adipocyte commitment.


BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Natalie A. Twine ◽  
Linda Harkness ◽  
Moustapha Kassem ◽  
Marc R. Wilkins

2008 ◽  
Vol 104 (2) ◽  
pp. 568-579 ◽  
Author(s):  
M. Eijken ◽  
I.M.J. Meijer ◽  
I. Westbroek ◽  
M. Koedam ◽  
H. Chiba ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9579
Author(s):  
Kyung-Ran Park ◽  
SooHyun Kim ◽  
MyoungLae Cho ◽  
Sang Wook Kang ◽  
Hyung-Mun Yun

Styrax Japonica Sieb. et Zucc. has been used as traditional medicine in inflammatory diseases, and isolated compounds have shown pharmacological activities. Pinoresinol glucoside (PIN) belonging to lignins was isolated from the stem bark of S. Japonica. This study aimed to investigate the biological function and mechanisms of PIN on cell migration, osteoblast differentiation, and matrix mineralization. Herein, we investigated the effects of PIN in MC3T3-E1 pre-osteoblasts, which are widely used for studying osteoblast behavior in in vitro cell systems. At concentrations ranging from 0.1 to 100 μM, PIN had no cell toxicity in pre-osteoblasts. Pre-osteoblasts induced osteoblast differentiation, and the treatment of PIN (10 and 30 μM) promoted the cell migration rate in a dose-dependent manner. At concentrations of 10 and 30 μM, PIN elevated early osteoblast differentiation in a dose-dependent manner, as indicated by increases in alkaline phosphatase (ALP) staining and activity. Subsequently, PIN also increased the formation of mineralized nodules in a dose-dependent manner, as indicated by alizarin red S (ARS) staining, demonstrating positive effects of PIN on late osteoblast differentiation. In addition, PIN induced the mRNA level of BMP2, ALP, and osteocalcin (OCN). PIN also upregulated the protein level of BMP2 and increased canonical BMP2 signaling molecules, the phosphorylation of Smad1/5/8, and the protein level of Runt-related transcription factor 2 (RUNX2). Furthermore, PIN activated non-canonical BMP2 signaling molecules, activated MAP kinases, and increased β-catenin signaling. The findings of this study indicate that PIN has biological roles in osteoblast differentiation and matrix mineralization, and suggest that PIN might have anabolic effects in bone diseases such as osteoporosis and periodontitis.


Sign in / Sign up

Export Citation Format

Share Document