miR‐15b‐5p ameliorated high glucose‐induced podocyte injury through repressing apoptosis, oxidative stress, and inflammatory responses by targeting Sema3A

2019 ◽  
Vol 234 (11) ◽  
pp. 20869-20878 ◽  
Author(s):  
Yanqin Fu ◽  
Chongxian Wang ◽  
Dongming Zhang ◽  
Xiaojing Chu ◽  
Yuanyuan Zhang ◽  
...  
2020 ◽  
Vol 15 (1) ◽  
pp. 939-950
Author(s):  
Jingfu Chen ◽  
Qing Xu ◽  
Wei Zhang ◽  
YuLan Zhen ◽  
Fei Cheng ◽  
...  

AbstractDiabetic nephropathy (DN) is the most serious long-term microvascular complication of diabetes, which mainly causes podocyte injury. Many studies have shown that microRNAs play a vital role in the development of DN. Studies have shown that miR-203-3p is involved in mesangial cell proliferation and apoptosis of DN mice. Therefore, we speculated that miR-203-3p might be related to the development of DN, but our study does not provide any evidence. In animal experiments, diabetic mice (db/db) were transfected with iR-203-3p overexpression lentiviral vectors (LV-miR-203-3p) and their control (LV-miR-con), with normal mice (db/m) being used as the control. High glucose (HG)-induced podocytes were used to construct a DN cell model in vitro. The expression levels of miR-203-3p, Semaphorin 3A (Sema3A) and inflammatory cytokines were detected by quantitative real-time polymerase chain reaction. Also, serum creatinine and blood urea nitrogen levels were used to evaluate the degree of renal injury in DN mice. Sema3A and apoptosis-related protein levels were assessed by the western blot analysis. Enzyme-linked immunosorbent assay was used to determine the different oxidative stress-related indicators and inflammatory cytokines. Flow cytometry and caspase-3 activity detection were used to analyze the degree of podocyte apoptosis. Our results suggested that the expression of miR-203-3p was lower in DN mice and in HG-induced podocytes. Overexpression of miR-203-3p reduced the body weight, blood glucose and renal injury of DN mice in vivo, as well as relieve the oxidative stress, inflammatory response and apoptosis of HG-induced podocytes in vitro. Functionally, Sema3A was a target of miR-203-3p, and Sema3A overexpression reversed the inhibitory effect of miR-203-3p on HG-induced podocyte injury. Our findings revealed that miR-203-3p alleviated the podocyte injury induced by HG via regulating Sema3A expression, suggesting that miR-203-3p might be a new therapeutic target to improve the progression of DN.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3174
Author(s):  
Nhung Quynh Do ◽  
Shengdao Zheng ◽  
Bom Park ◽  
Quynh T. N. Nguyen ◽  
Bo-Ram Choi ◽  
...  

Myrciaria dubia (HBK) McVaugh (camu-camu) belongs to the family Myrtaceae. Although camu-camu has received a great deal of attention for its potential pharmacological activities, there is little information on the anti-oxidative stress and anti-inflammatory effects of camu-camu fruit in skin diseases. In the present study, we investigated the preventative effect of 70% ethanol camu-camu fruit extract against high glucose-induced human keratinocytes. High glucose-induced overproduction of reactive oxygen species (ROS) was inhibited by camu-camu fruit treatment. In response to ROS reduction, camu-camu fruit modulated the mitogen-activated protein kinases (MAPK)/activator protein-1 (AP-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor of activated T cells (NFAT) signaling pathways related to inflammation by downregulating the expression of proinflammatory cytokines and chemokines. Furthermore, camu-camu fruit treatment activated the expression of nuclear factor E2-related factor 2 (Nrf2) and subsequently increased the NAD(P)H:quinone oxidoreductase1 (NQO1) expression to protect keratinocytes against high-glucose-induced oxidative stress. These results indicate that camu-camu fruit is a promising material for preventing oxidative stress and skin inflammation induced by high glucose level.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Li Deng ◽  
Xuxin Chen ◽  
Yi Zhong ◽  
Xing Wen ◽  
Ying Cai ◽  
...  

High glucose- (HG-) induced cardiomyocyte injury is the leading cause of diabetic cardiomyopathy, which is associated with the induction of inflammatory responses and oxidative stress. TGR5 plays an important role in the regulation of glucose metabolism. However, whether TGR5 has cardioprotective effects against HG-induced cardiomyocyte injury is unknown. Neonatal mouse cardiomyocytes were isolated and incubated in a HG medium. Protein and mRNA expression was detected by western blotting and RT-PCR, respectively. Cell apoptosis was determined by Hoechst 33342 staining and flow cytometry. After treatment of cells with HG, TGR5-selective agonist INT-777 reduced the increase in expression of proinflammatory cytokines and NF-κB, whereas pretreatment of cells with TGR5 shRNA significantly reduced the inhibitory effects of INT-777. We also found that INT-777 increased the protein expression of Nrf2 and HO-1. In the presence of TGR5 shRNA, the expression of Nrf2 and HO-1 was reduced, indicating that TGR5 may exert an antioxidant effect partially through the Nrf2/HO-1 pathway. Furthermore, INT-777 treatment inhibited HG-induced ROS production and apoptosis that were attenuated in the presence of TGR5 shRNA or ZnPP (HO-1 inhibitor). Activation of TGR5 has cardioprotective effects against HG-induced cardiomyocyte injury and could be a pharmacological target for the treatment of diabetic cardiomyopathy.


2018 ◽  
Author(s):  
Meng Wang ◽  
Ji Hu ◽  
Linling Yan ◽  
Yeping Yang ◽  
Min He ◽  
...  

AbstractOxidative stress contributes substantially to podocyte injury in diabetic kidney disease. The mechanism of hyperglycemia-induced oxidative stress in podocytes is not fully understood. Glucose-6-phosphate dehydrogenase is critical in maintaining NADPH, an important cofactor for antioxidant system. Here, we hypothesized that high glucose induces ubiquitylation and degradation of G6PD, which injures podocytes by reactive oxygen species (ROS) accumulation. We found that both G6PD protein expression and G6PD activity was decreased in kidneys of both diabetic patients and diabetic rodents. Overexpressing G6PD reversed redox imbalance and podocyte apoptosis induced by high glucose and palmitate. Inhibition of G6PD induced podocyte apoptosis. In G6PD deficient mice, podocyte apoptosis was also largely increased. High glucose had no effect on G6PD mRNA level but it caused decreased G6PD protein expression, which was mediated by the ubiquitin proteasome pathway. Furthermore, von Hippel−Lindau (VHL), an E3 ubiquitin ligase subunit, directly bound to G6PD and degraded G6PD through ubiquitylating G6PD on lysine residues 366/403. Our data suggest that high glucose induces ubiquitylation of G6PD by VHL, which leads to ROS accumulation and podocyte injury.


1999 ◽  
Vol 82 (S 01) ◽  
pp. 32-37 ◽  
Author(s):  
Karlheinz Peter ◽  
Wolfgang Kübler ◽  
Johannes Ruef ◽  
Thomas K. Nordt ◽  
Marschall S. Runge ◽  
...  

SummaryThe initiating event of atherogenesis is thought to be an injury to the vessel wall resulting in endothelial dysfunction. This is followed by key features of atherosclerotic plaque formation such as inflammatory responses, cell proliferation and remodeling of the vasculature, finally leading to vascular lesion formation, plaque rupture, thrombosis and tissue infarction. A causative relationship exists between these events and oxidative stress in the vessel wall. Besides leukocytes, vascular cells are a potent source of oxygen-derived free radicals. Oxidants exert mitogenic effects that are partially mediated through generation of growth factors. Mitogens, on the other hand, are potent stimulators of oxidant generation, indicating a putative self-perpetuating mechanism of atherogenesis. Oxidants influence the balance of the coagulation system towards platelet aggregation and thrombus formation. Therapeutic approaches by means of antioxidants are promising in both experimental and clinical designs. However, additional clinical trials are necessary to assess the role of antioxidants in cardiovascular disease.


2008 ◽  
Vol 13 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Na-Ri Yi ◽  
Kyoung-Chun Seo ◽  
Ji-Myung Choi ◽  
Eun-Ju Cho ◽  
Young-Ok Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document