Differential gene expression of soluble CD8+ T-cell mediated suppression of HIV replication in three older children

2010 ◽  
Vol 83 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Ben Z. Katz ◽  
Babak Salimi ◽  
Samantha L. Gadd ◽  
Chiang-Ching Huang ◽  
William J. Kabat ◽  
...  
2011 ◽  
Vol 83 (3) ◽  
pp. 557-557
Author(s):  
Ben Z. Katz ◽  
Babak Salimi ◽  
Samantha L. Gadd ◽  
Chiang-Ching Huang ◽  
William J. Kabat ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3363-3370 ◽  
Author(s):  
Monchou Fann ◽  
Jason M. Godlove ◽  
Marta Catalfamo ◽  
William H. Wood ◽  
Francis J. Chrest ◽  
...  

Abstract To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response.


2004 ◽  
Vol 173 (1) ◽  
pp. 485-493 ◽  
Author(s):  
Jacqueline M. Cliff ◽  
Iryna N. J. Andrade ◽  
Rohit Mistry ◽  
Christopher L. Clayton ◽  
Mark G. Lennon ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1555-1555
Author(s):  
Michael E Coyle ◽  
Ravi Dashnamoorthy ◽  
Afshin Beheshti ◽  
Andrew M. Evens

Abstract Introduction: The PI3K pathway plays a significant role in cell cycle, apoptosis, and DNA repair. It is commonly dysregulated in cancers making it a potential therapeutic target. BKM120 is a novel oral pan-class I PI3K inhibitor with antitumor activity and efficacy reported in solid tumors. It is in phase I/II clinical trials for treatment of relapsed-refractory NHL. There are additional data desired towards molecular mechanism of action and biological pathways of resistance for BKM120-treated lymphoma. Methods: TCL cell lines (Jurkat, Hut78, HH), HL lines (L428, L540) and DLBCL lines (SUDHL4, SUDHL6, SUDHL10, OCILY3, OCILY19) were treated with increasing concentrations of BKM120 (0.16-10uM) in 96 well plate and cell viability assessed by MTT assay. For gene expression profiling (GEP), SUDHL6, OCILY3, Jurkat, Hut78 and L540 cells were treated at IC50and analyzed on Illumina human HT12 gene chip. Gene Set Enrichment Analysis (GSEA) and biological network analysis were done using Ingenuity Pathway Analysis and Cytoscape. Apoptosis was evaluated by Annexin V and propidium iodine (AV/PI) staining and flow cytometry. For cell cycle analysis, Jurkat cells were exposed to BrdU and stained with anti-BrdU FITC and 7-AAD and analyzed by flow cytometry. Results: Cell viability showed dose-dependent growth inhibition in all lines. IC50 was between 0.316μM - 3.72μM at 72 hours (hrs). GEP analyses showed significant gene changes following BKM120 treatment with a 1.2 fold-change for OCILY3 (1886 genes), SUDHL6 (1884 genes), Hut78 (1474 genes), L540 (859 genes) and Jurkat (212 genes) (Fig 1). Differential gene expression with BKM120-treated cells showed significant overlap among DLBCL cell lines, with 991 genes of 1886 (OCILY3) and 1884 (SUDHL6). The differentially expressed genes in L540 HL cells treated with BKM120 showed better overlap with DLBCL lines than with TCL lines, with 366 and 315 of 859 L540 genes overlapping with OCILY3 and SUDHL6 lines, respectively. This may reflect the B cell of origin related response to BKM120 treatment. TCL lines had different profiles, with 52 overlapping genes of 212 for Jurkat and 1474 for Hut78. Jurkat is known to harbor a PTEN mutation with constitutively active PI3K, which may explain the differences in the GEP observed with BKM120 treatment in Jurkat and Hut78 TCL. GSEA and biological network analysis of BKM120 treated lymphoma cells showed conserved inhibitory effects on cell cycle, DNA replication and metabolic process across all lymphoma cells. However, we observed that immune signaling processes were oppositely regulated in B and T cell lymphomas. AV/PI-staining and flow cytometry revealed dose-dependent increase of apoptotic cells in all lymphoma cell lines. Analysis based on BrdU incorporation revealed induction of G2/M arrest in Jurkat cells treated with BKM120. Western blots showed decreased phosphorylation of PI3K and mTOR substrates including 4-EBP and phospho-p70S6K with BKM120 treatment. Although phosphorylation of MEK/ERK were downregulated at lower doses of BKM120, at higher doses, increased MEK/ERK phosphorylation were seen. Analysis of cell cycle regulatory proteins Cyclin, CDK and phospho-histone H3 with BKM120 treatment resulted in expression changes consistent with G2/M arrest and also resulted in increased apoptosis related PARP cleavage in all lymphoma cell lines. Conclusions: BKM120 treatment elicited biologically distinct GEP with immune functions oppositely regulated in B and T cell lymphomas, however impairment of cell cycle, DNA replication and metabolic function were the core responses/function to PI3K inhibition. Furthermore, based on GSEA, it was predicted that cell cycle arrest and MAPK activation as likely mechanisms of resistance to BKM120 treatment in these lymphoma cell lines. Additional studies are planned to examine rational combinations of BKM120 together with other targeted small molecules (e.g., Chk1-inhibitor, CDK4/6 inhibitor and MEK inhibitor). Figure 1. Differential gene expression and analysis of gene overlap. A. Point and boxplot representations of changes in gene expression following treatment with BKM120 for each cell line. B. Venn diagram of genes changing by 1.2 fold or more following treatment with BKM120 by cell line. C. Venn diagram of genes changing by 1.2 fold or more following treatment with BKM120, comparing SUDHL6 (Germinal center DLBCL) and OCI-Ly3 (ABC-DLBCL) and Hut78 and Jurkat (TCL lines). Figure 1. Differential gene expression and analysis of gene overlap. A. Point and boxplot representations of changes in gene expression following treatment with BKM120 for each cell line. B. Venn diagram of genes changing by 1.2 fold or more following treatment with BKM120 by cell line. C. Venn diagram of genes changing by 1.2 fold or more following treatment with BKM120, comparing SUDHL6 (Germinal center DLBCL) and OCI-Ly3 (ABC-DLBCL) and Hut78 and Jurkat (TCL lines). Disclosures No relevant conflicts of interest to declare.


BMC Genomics ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 825 ◽  
Author(s):  
Nuria Palau ◽  
Antonio Julià ◽  
Carlos Ferrándiz ◽  
Lluís Puig ◽  
Eduardo Fonseca ◽  
...  

Virology ◽  
2007 ◽  
Vol 362 (1) ◽  
pp. 217-225 ◽  
Author(s):  
Beatriz Martinez-Mariño ◽  
Hillary Foster ◽  
Yanling Hao ◽  
Jay A. Levy

Sign in / Sign up

Export Citation Format

Share Document