Direct analysis of the central panel of the so-called Wyts triptych after Jan van Eyck

2010 ◽  
Vol 41 (11) ◽  
pp. 1500-1509 ◽  
Author(s):  
A. Deneckere ◽  
F.-Ph. Hocquet ◽  
A. Born ◽  
P. Klein ◽  
S. Rakkaa ◽  
...  
2017 ◽  
Vol 35 (2) ◽  
pp. 185 ◽  
Author(s):  
Xiaoming GONG ◽  
Ronghui MA ◽  
Hongtao WANG ◽  
Liqiang GUO ◽  
Kai LI ◽  
...  

2020 ◽  
Vol 105 (12) ◽  
pp. 1830-1840 ◽  
Author(s):  
Yi Sun ◽  
Axel K. Schmitt ◽  
Lucia Pappalardo ◽  
Massimo Russo

Abstract Initial excess protactinium (231Pa) is a frequently suspected source of discordance in baddeleyite (ZrO2) geochronology, which limits accurate U/Pb dating, but such excesses have never been directly demonstrated. In this study, Pa incorporation in late Holocene baddeleyite from Somma-Vesuvius (Campanian Volcanic Province, central Italy) and Laacher See (East Eifel Volcanic Field, western Germany) was quantified by U-Th-Pa measurements using a large-geometry ion microprobe. Baddeleyite crystals isolated from subvolcanic syenites have average U concentrations of ~200 ppm and are largely stoichiometric with minor abundances of Nb, Hf, Ti, and Fe up to a few weight percent. Measured (231Pa)/(235U) activity ratios are significantly above the secular equilibrium value of unity and range from 3.4(8) to 14.9(2.6) in Vesuvius baddeleyite and from 3.6(9) to 8.9(1.4) in Laacher See baddeleyite (values within parentheses represent uncertainties in the last significant figures reported as 1σ throughout the text). Crystallization ages of 5.12(56) ka (Vesuvius; MSWD = 0.96, n = 12) and 15.6(2.0) ka (Laacher See; MSWD = 0.91, n = 10) were obtained from (230Th)/(238U) disequilibria for the same crystals, which are close to the respective eruption ages. Applying a corresponding age correction indicates average initial (231Pa)/(235U)0 of 8.8(1.0) (Vesuvius) and 7.9(5) (Laacher See). For reasonable melt activities, model baddeleyite-melt distribution coefficients of DPa/DU = 5.8(2) and 4.1(2) are obtained for Vesuvius and Laacher See, respectively. Speciation-dependent (Pa4+ vs. Pa5+) partitioning coefficients (D values) from crystal lattice strain models for tetra- and pentavalent proxy ions significantly exceed DPa/DU inferred from direct analysis of 231Pa for Pa5+. This is consistent with predominantly reduced Pa4+ in the melt, for which D values similar to U4+ are expected. Contrary to common assumptions, baddeleyite-crystallizing melts from Vesuvius and Laacher See appear to be dominated by Pa4+ rather than Pa5+. An initial disequilibrium correction for baddeleyite geochronology using DPa/DU = 5 ± 1 is recommended for oxidized phonolitic melt compositions.


2021 ◽  
Vol 5 (2) ◽  
pp. 15
Author(s):  
Paz Nativ ◽  
Yonatan Gräber ◽  
Yaron Aviezer ◽  
Ori Lahav

A new analytic approach is presented for determining the total volatile fatty acids (VFAT) concentration in anaerobic digesters. The approach relies on external determination of the inorganic carbon concentration (CT) in the analyzed solution, along with two strong-acid titration points. The CT concentration can be determined by either a direct analysis (e.g., by using a TOC device) or by estimating it from the recorded partial pressure of CO2(g) in the biogas (often a routine analysis in anaerobic digesters). The titration is carried out to pH 5.25 and then to pH 4.25. The two titration results are plugged into an alkalinity-mass-based equation and then the two terms are subtracted from each other to yield an equation in which VFAT is the sole unknown (since CT is known and the effect of the total orthophosphate and ammonia concentrations is shown to be small at this pH range). The development of the algorithm and its verification on four anaerobic reactor liquors is presented, on both the raw water and on acetic acid-spiked samples. The results show the method to be both accurate (up to 2.5% of the expected value for VFAT/Alkalinity >0.2) and repetitive when the total orthophosphate and ammonia concentrations are known, and fairly accurate (±5% for VFAT >5 mM) when these are completely neglected. PHREEQC-assisted computation of CT from the knowledge of the partial pressure of CO2(g) in the biogas (and pH, EC and temperature in the liquor) resulted in a very good estimation of the CT value (±3%), indicating that this technique is adequate for the purpose of determining VFAT for alarming operators in case of process deterioration and imminent failure.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1662
Author(s):  
Dominik Łagowski ◽  
Sebastian Gnat ◽  
Aneta Nowakiewicz ◽  
Aleksandra Trościańczyk

Dermatophytes are filamentous fungi with the ability to digest and grow on keratinized substrates. The ongoing improvements in fungal detection techniques give new scope for clinical implementations in laboratories and veterinary clinics, including the monitoring of the disease and carrier status. The technologically advanced methods for dermatophyte detection include molecular methods based on PCR. In this context, the aim of this study was to carry out tests on the occurrence of dermatophytes in cattle herds using qPCR methods and a comparative analysis with conventional methods. Each sample collected from ringworm cases and from asymptomatic cattle was divided into three parts and subjected to the real-time PCR technique, direct light microscopy analysis, and culture-based methods. The use of the real-time PCR technique with pan-dermatophyte primers detected the presence of dermatophytes in the sample with a 10.84% (45% vs. 34.17%) higher efficiency than direct analysis with light microscopy. Moreover, a dermatophyte culture was obtained from all samples with a positive qPCR result. In conclusion, it seems that this method can be used with success to detect dermatophytes and monitor cowsheds in ringworm cases and carriers in cattle.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Alba Alvarez-Martin ◽  
John George ◽  
Emily Kaplan ◽  
Lauren Osmond ◽  
Leah Bright ◽  
...  

AbstractTwo mass spectrometry (MS) methods, solid-phase microextraction gas chromatography (SPME–GC–MS) and direct analysis in real time (DART-MS), have been explored to investigate widespread efflorescence observed on exhibited objects at the Smithsonian’s National Museum of the American Indian in New York (NMAI-NY). Both methods show great potential, in terms of speed of analysis and level of information, for identifying the organic component of the efflorescence as 2,2,6,6-tetramethyl-4-piperidinol (TMP-ol) emitted by the structural adhesive (Terostat MS 937) used for exhibit case construction. The utility of DART-MS was proven by detecting the presence of TMP-ol in construction materials in a fraction of the time and effort required for SPME–GC–MS analysis. In parallel, an unobtrusive SPME sampling strategy was used to detect volatile organic compounds (VOCs) accumulated in the exhibition cases. This sampling technique can be performed by collections and conservation staff at the museum and shipped to an off-site laboratory for analysis. This broadens the accessibility of MS techniques to museums without access to instrumentation or in-house analysis capabilities.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2299
Author(s):  
Jéssica P. Silva ◽  
Alonso R. P. Ticona ◽  
Pedro R. V. Hamann ◽  
Betania F. Quirino ◽  
Eliane F. Noronha

Lignocellulosic residues are low-cost abundant feedstocks that can be used for industrial applications. However, their recalcitrance currently makes lignocellulose use limited. In natural environments, microbial communities can completely deconstruct lignocellulose by synergistic action of a set of enzymes and proteins. Microbial degradation of lignin by fungi, important lignin degraders in nature, has been intensively studied. More recently, bacteria have also been described as able to break down lignin, and to have a central role in recycling this plant polymer. Nevertheless, bacterial deconstruction of lignin has not been fully elucidated yet. Direct analysis of environmental samples using metagenomics, metatranscriptomics, and metaproteomics approaches is a powerful strategy to describe/discover enzymes, metabolic pathways, and microorganisms involved in lignin breakdown. Indeed, the use of these complementary techniques leads to a better understanding of the composition, function, and dynamics of microbial communities involved in lignin deconstruction. We focus on omics approaches and their contribution to the discovery of new enzymes and reactions that impact the development of lignin-based bioprocesses.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 292
Author(s):  
Abdulaziz Ali Alghamdi ◽  
Hussain Alattas ◽  
Waseem Sharaf Saeed ◽  
Abdel-Basit Al-Odayni ◽  
Ahmed Yacine Badjah Hadj Ahmed ◽  
...  

A series of poly(ethylene-co-vinyl alcohol)/poly(ε-caprolactone) blends with different compositions were prepared using solvent casting. The miscibility of this pair of polymers was investigated using differential scanning calorimetry (DSC), and proved by a negative Flory interaction parameter value calculated from the Nishi–Wang equation. The miscibility of this blend was also confirmed by scanning electronic microscopy (SEM). The thermal behaviors of the obtained materials were investigated by DSC, thermogravimetric analysis, and direct analysis in real-time–time-of-flight mass spectrometry and the results obtained were very relevant. Furthermore, the crystalline properties of the obtained materials were studied by DSC and X-ray diffraction where the Ozawa approach was adopted to investigate the non-isothermal crystallization kinetics. The results obtained revealed that this approach described the crystallization process well.


Sign in / Sign up

Export Citation Format

Share Document