Design and development of inclined and V-slot microstrip antennas for circular polarization and omni-directional radiation pattern

2008 ◽  
Vol 50 (3) ◽  
pp. 708-711
Author(s):  
S. K. Satnoor ◽  
R. M. Vani ◽  
R. B. Konda ◽  
S. N. Mulgi ◽  
P. V. Hunagund
Author(s):  
Syah Alam ◽  
◽  
Indra Surjati ◽  
Teguh x Teguh Firmansyah

This study proposes a new design of wide bandwidth microstrip antennas using dual feed line techniques. To obtain the optimal impedance bandwidth (IBW) and Axial Ratio Bandwidth (ARBW), several iterations were performed by controlling the dimensions and length of the dual feed line. From the simulation results, the proposed antenna obtained IBW of 0.4GHz or 17% and ARBW of 0.38GHz or 15% at an operating frequency of 2.5 GHz. The gain of the proposed antenna was 5.73dB with a directional radiation pattern. The dual feedline technique successfully improved IBW up to 254.16% compared with the single feed technique. This study would be useful especially for bandwidth optimization of microstrip antennas.


Abstract: This paper present a novel design and development of inverted U-slot rectangular ring coupled monopole microstrip antenna (IURCMMA) for quad band operation. The monopole microstrip antennas are commonly designed for wide band operation. However, by placing the optimum ring slots in the form of slits on the radiating patch, the antenna can be made to operate at different frequency bands. The proposed antenna operates in the frequency range of 1.5 to 10 GHz with a peak gain of 8.69 dB and gives omni directional radiation pattern in both E and H planes. The measured and simulated results of return loss are in good agreement with each other. With these features the proposed antenna may find many applications at microwave frequency range. Keywords: Monopole, Rectangular, Bandwidth, Quad band , Gain.


Author(s):  
Melvin Chamakalayil Jose ◽  
Radha Sankararajan ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract In the proposed research paper, a novel compact, ultra-wideband electronically switchable dual-band omnidirectional to directional radiation pattern microstrip planar printed rectangular monopole antenna (PRMA) has been presented. The proposed antenna system has an optimum size of 0.26 λ0 × 0.28 λ0. A combination of radiators, reflectors, and two symmetrical grounds does place on the same layer of the rectangular microstrip PRMA. The frequency agility and the radiation pattern from omnidirectional to directional are achieved using two SMD PIN diodes (SMP1340-04LF). The directional radiation patterns with 180° phase shifts are achieved at the C-band frequency spectrum. The parametric study of the proposed antenna system was performed for different design parameters, and the antenna characteristics were analyzed. An antenna prototype is fabricated using the printed circuit board etching method by using RMI UV laser etching and cutting tools. The measurements of the proposed antenna are conducted in an anechoic chamber to validate the simulations. There are three states of operations due to two SMD PIN diodes being used in switching circuits. In state-I, the proposed antenna radiates at 6.185 GHz (5.275–6.6 75 GHz) in the Ф = 270° direction with a gain of 2.1 dBi, whereas in state-II, it radiates at 5.715 GHz (5.05–6.8 GHz) in the Ф = 90° direction with a gain of 2.1 dBi. In state-III, the antenna exhibits the X-band frequency with center frequency at 9.93 GHz (8.845–10.49 GHz), and the omnidirectional pattern offers a gain of 4.1 dBi. The features of the proposed antenna are suitable for high-speed wireless sensor network communication in industries such as chemical reactors in oil and gas and pharmaceuticals. It is also well suited for IoT and 5G-sub-6-GHz applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Seyyed Mohammad Mehdi Moshiri ◽  
Najmeh Nozhat

AbstractIn this paper, an optical smart multibeam cross dipole nano-antenna has been proposed by combining the absorption characteristic of graphene and applying different arrangements of directors. By introducing a cross dipole nano-antenna with two V-shaped coupled elements, the maximum directivity of 8.79 dBi has been obtained for unidirectional radiation pattern. Also, by applying various arrangements of circular sectors as director, different types of radiation pattern such as bi- and quad-directional have been attained with directivities of 8.63 and 8.42 dBi, respectively, at the wavelength of 1550 nm. The maximum absorption power of graphene can be tuned by choosing an appropriate chemical potential. Therefore, the radiation beam of the proposed multibeam cross dipole nano-antenna has been controlled dynamically by applying a monolayer graphene. By choosing a suitable chemical potential of graphene for each arm of the suggested cross dipole nano-antenna without the director, the unidirectional radiation pattern shifts ± 13° at the wavelength of 1550 nm. Also, for the multibeam nano-antenna with different arrangements of directors, the bi- and quad-directional radiation patterns have been smartly modified to uni- and bi-directional ones with the directivities of 10.1 and 9.54 dBi, respectively. It is because of the graphene performance as an absorptive or transparent element for different chemical potentials. This feature helps us to create a multipath wireless link with the capability to control the accessibility of each receiver.


2011 ◽  
Vol 143-144 ◽  
pp. 32-36
Author(s):  
Su Ling Wang ◽  
Ya Ting Gan ◽  
Guo Dong Wang

Microstrip Antennas have many applications in various communication systems. A new configuration of microstrip antenna is proposed in this paper. The microstrip antenna has two radiation ports. Through changing the radiation intensity of the two ports, the proposed structure breaks the balance of the radiation of the microstrip antenna therefore the radiation pattern would be changed corresponsively. Theory analysis is carried out based on microstrip antenna theory. Both analysis and simulation show that the new configuration can realize the radiation pattern controlled and the theory analysis agreed very well with simulation.


Sign in / Sign up

Export Citation Format

Share Document