scholarly journals Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review

Obesity ◽  
2019 ◽  
Vol 27 (12) ◽  
pp. 1932-1949 ◽  
Author(s):  
David Jimenez‐Pavon ◽  
Juan Corral‐Perez ◽  
David Sánchez‐Infantes ◽  
Francesc Villarroya ◽  
Jonatan R. Ruiz ◽  
...  
Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1286
Author(s):  
Daniel Rojas-Valverde ◽  
Pablo Tomás-Carús ◽  
Rafael Timón ◽  
Nuno Batalha ◽  
Braulio Sánchez-Ureña ◽  
...  

Background: Body temperature is often assessed in the core and the skin. Infrared thermography has been used to measure skin temperature (Tsk) in sport research and clinical practice. This study aimed to explore the information reported to date on the use of infrared thermography to detect short-term Tsk responses to endurance exercise and to identify the methodological considerations and knowledge gaps, and propose future directions. Method: A web search (PubMed, Science Direct, Google Scholar, and Web of Science) was conducted following systematic review guidelines, and 45 out of 2921 studies met the inclusion criteria (endurance sports, since 2000, English, full text available). Results: A total of 45 publications were extracted, in which most of the sample were runners (n = 457, 57.9%). Several differences between IRT imaging protocols and ROI selection could lead to potential heterogeneity of interpretations. These particularities in the methodology of the studies extracted are widely discussed in this systematic review. Conclusions: More analyses should be made considering different sports, exercise stimuli and intensities, especially using follow-up designs. Study-derived data could clarify the underlying thermo physiological processes and assess whether Tsk could be used a reliable proxy to describe live thermal regulation in endurance athletes and reduce their risk of exertional heat illness/stroke. Also more in-depth analyses may elucidate the Tsk interactions with other tissues during exercise-related responses, such as inflammation, damage, or pain.


2019 ◽  
Vol 82 ◽  
pp. 186-196 ◽  
Author(s):  
Borja Martinez-Tellez ◽  
Alejandro Perez-Bey ◽  
Guillermo Sanchez-Delgado ◽  
Francisco M. Acosta ◽  
Juan Corral-Perez ◽  
...  

2015 ◽  
Vol 66 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Anouk A. J. J. van der Lans ◽  
Maarten J. Vosselman ◽  
Mark J. W. Hanssen ◽  
Boudewijn Brans ◽  
Wouter D. van Marken Lichtenbelt

2016 ◽  
Vol 136 (11) ◽  
pp. 1581-1585 ◽  
Author(s):  
Tota Mizuno ◽  
Takeru Sakai ◽  
Shunsuke Kawazura ◽  
Hirotoshi Asano ◽  
Kota Akehi ◽  
...  

Cartilage ◽  
2021 ◽  
Vol 13 (2_suppl) ◽  
pp. 1790S-1801S
Author(s):  
Guglielmo Schiavon ◽  
Gianluigi Capone ◽  
Monique Frize ◽  
Stefano Zaffagnini ◽  
Christian Candrian ◽  
...  

Objective Inflammation plays a central role in the pathophysiology of rheumatic diseases as well as in osteoarthritis. Temperature, which can be quantified using infrared thermography, provides information about the inflammatory component of joint diseases. This systematic review aims at assessing infrared thermography potential and limitations in these pathologies. Design A systematic review was performed on 3 major databases: PubMed, Cochrane library, and Web of Science, on clinical reports of any level of evidence in English language, published from 1990 to May 2021, with infrared thermography used for diagnosis of osteoarthritis and rheumatic diseases, monitoring disease progression, or response to treatment. Relevant data were extracted, collected in a database, and analyzed for the purpose of this systematic review. Results Of 718 screened articles 32 were found to be eligible for inclusion, for a total of 2094 patients. Nine studies reported the application to osteoarthritis, 21 to rheumatic diseases, 2 on both. The publication trend showed an increasing interest in the last decade. Seven studies investigated the correlation of temperature changes with osteoarthritis, 16 with rheumatic diseases, and 2 with both, whereas 2 focused on the pre-post evaluation to investigate treatment results in patients with osteoarthritis and 5 in patients with rheumatic diseases. A correlation was shown between thermal findings and disease presence and stage, as well as the clinical assessment of disease activity and response to treatment, supporting infrared thermography role in the study and management of rheumatic diseases and osteoarthritis. Conclusions The systematic literature review showed an increasing interest in this technology, with several applications in different joints affected by inflammatory and degenerative pathologies. Infrared thermography proved to be a simple, accurate, noninvasive, and radiation-free method, which could be used in addition to the currently available tools for screening, diagnosis, monitoring of disease progression, and response to medical treatment.


2021 ◽  
Author(s):  
Laura Namisnak ◽  
Sepideh Khoshnevis ◽  
Kenneth R. Diller

Abstract Various medical procedures are accomplished by manipulating skin temperature in a nonuniform pattern. Skin temperature monitoring is essential to assess conformance to protocol specifications and to prevent thermal injury. Existing solutions for skin temperature monitoring include single point sensors, such as thermocouples, and two-dimensional methods of sensing surface temperature, such as infrared thermography, and wearable technology. Single point sensors cannot detect the average temperature and consequently their measurements cannot be representative of average surface temperature in a nonuniform temperature field. Infrared thermography requires optical access, and wearable sensors may require complex manufacturing processes and impede the heat exchange with a source by introducing a layer of insulation. Our solution is a two-dimensional resistance temperature detector (2D RTD) created by knitting copper magnet wire into custom shapes. The 2D RTDs were calibrated, compared to one-dimensional sensors and wearable sensors, and analyzed for hysteresis, repeatability, and surface area conformation. Resistance and temperature were correlated with an R2 of 0.99. The 2D RTD proved to be a superior device for measuring average skin temperature exposed to a nonuniform temperature boundary in the absence of optical access such as when a full body thermal control garment is worn.


2019 ◽  
Vol 28 (Sup12) ◽  
pp. S9-S16
Author(s):  
Fazila Abu Bakar Aloweni ◽  
Shin Yuh Ang ◽  
Yee Yee Chang ◽  
Xin Ping Ng ◽  
Kai Yunn Teo ◽  
...  

Objective: To evaluate the use of an infrared thermography device in assessing skin temperature among category I pressure ulcer (PU) and/or suspected deep tissue injuries (SDTI) with intact skin. Methods: An observational cross-sectional study design was used. Adult inpatients (cases) who had a category I PU or suspected deep tissue injury (skin intact) on the sacral or heel during the study period (March to April 2018) were recruited. Patients without a PU were also recruited to act as control. Thermal images of the patient's PU site and non-PU site were taken within 24 hours of PU occurrence. Thermal images of the control patients (no PU) were also taken. Each PU case was matched to three control patients in terms of age, gender, race and anatomical sites. All thermal images were taken using a portable CAT S60 Thermal Imaging Rugged Smartphone (Caterpillar Inc., US) that provided readings of the skin temperature in degrees Celsius. Results: A total of 17 cases and 51 controls were recruited. Among the cases, the mean difference in skin temperature between the PU site (mean: 31.14°C; standard deviation [SD]: 1.54) and control site within the cases (mean: 28.93°C; SD: 3.47) was significant (difference: 2.21±3.66°C; p=0·024). When comparing between all cases and controls, the mean temperature difference was non-significant. When comparing between the category I PU and suspected deep pressure injury cases, the mean difference was also non-significant. Conclusion: Using infrared thermography technology at the bedside to measure skin temperature will support the clinical diagnosis of patients with skin types I to III. However, there is a need for a more accurate and objective measurement to identify and diagnose early category I PU or suspected deep tissue injury in adult patients with darker skin types 4 and above, enabling early initiation of preventive measures in the hospital acute care setting.


Sign in / Sign up

Export Citation Format

Share Document