scholarly journals Modeling inelastic‐anisotropic damage behavior of concrete considering lateral deformation

PAMM ◽  
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Timo Stein ◽  
Ajmal Gafoor ◽  
Dieter Dinkler
Author(s):  
Fabien Bernachy-Barbe ◽  
Lionel Gélébart ◽  
Michel Bornert ◽  
Jérôme Crépin ◽  
Cédric Sauder

2020 ◽  
Vol 87 (8) ◽  
Author(s):  
Mingyao Li ◽  
Xin Chen ◽  
Dong Zhou ◽  
Yewang Su

Abstract The development of constitutive models for shales has been a challenge for decades due to the difficulty of characterizing the strongly anisotropic macroscopic behavior related to the inherent mesostructure and damage mechanisms. In this paper, a spectral microplane damage model is developed for the anisotropic damage behavior of shales. The modeling challenge of the anisotropic elasticity in the microplane model is theoretically overcome by the spectral decomposition theory without limitation on the degree of the anisotropy compared with other microplane models. The stiffness tensor of anisotropic shales is effectively decomposed into four different eigenmodes with the activation of certain groups of microplanes corresponding to the specific orientation of the applied stresses. The inherent and the induced anisotropic behavior is thus characterized by proposing suitable microplane relations on certain eigenmodes directly reflecting the initial mesostructure and the failure mechanisms. For the challenge of the postpeak softening behavior, two-scalar damage variables are introduced to characterize the tensile and the shear damage related to the opening and the closure of microcracks under different stress conditions. Comparison between numerical simulation and experimental data shows that the proposed model provides satisfactory predictions for both weakly and highly anisotropic shales including prepeak nonlinear behavior, failure strengths, and postpeak softening under different confining pressures and different bedding plane orientations.


2016 ◽  
Vol 58 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Silke Klitschke ◽  
Wolfgang Böhme

2002 ◽  
Vol 5 (2-3-4) ◽  
pp. 269-285 ◽  
Author(s):  
Patrick Croix ◽  
Franck Lauro ◽  
Jérôme Oudin
Keyword(s):  

2021 ◽  
pp. 105678952110339
Author(s):  
Jiaxing Cheng ◽  
Zhaoxia Li

Effective numerical analysis is significant for the optimal design and reliability evaluation of MEMS, but the complexity of multi-physical field couplings and irreversible damage accumulation in long-term performance make the analysis difficult. In the present paper, the continuum damage mechanics method is used to develop a creep damage model and conduct long-term performance analysis for MEMS thermal actuators with coupled thermo-mechanical damage behavior. The developed damage model can make a connection between the material deterioration due to microstructure changes and the macroscopic responses (the change of thermo-mechanical performance or structure failure). The numerical simulations of coupled thermo-mechanical behavior in long-term performance are implemented using the finite element method, which is validated through comparison with previous literature. The numerical results demonstrate that the proposed damage model and numerical method can provide effective assessment in the long-term performance of MEMS thermal actuators.


Sign in / Sign up

Export Citation Format

Share Document