scholarly journals Numerical Simulation of the Damage Behavior of a Concrete Beam with an Anisotropic Damage Model

2018 ◽  
Vol 50 (5) ◽  
pp. 735-742
Author(s):  
Y. C. Long ◽  
C. T. Yu
2020 ◽  
Vol 87 (8) ◽  
Author(s):  
Mingyao Li ◽  
Xin Chen ◽  
Dong Zhou ◽  
Yewang Su

Abstract The development of constitutive models for shales has been a challenge for decades due to the difficulty of characterizing the strongly anisotropic macroscopic behavior related to the inherent mesostructure and damage mechanisms. In this paper, a spectral microplane damage model is developed for the anisotropic damage behavior of shales. The modeling challenge of the anisotropic elasticity in the microplane model is theoretically overcome by the spectral decomposition theory without limitation on the degree of the anisotropy compared with other microplane models. The stiffness tensor of anisotropic shales is effectively decomposed into four different eigenmodes with the activation of certain groups of microplanes corresponding to the specific orientation of the applied stresses. The inherent and the induced anisotropic behavior is thus characterized by proposing suitable microplane relations on certain eigenmodes directly reflecting the initial mesostructure and the failure mechanisms. For the challenge of the postpeak softening behavior, two-scalar damage variables are introduced to characterize the tensile and the shear damage related to the opening and the closure of microcracks under different stress conditions. Comparison between numerical simulation and experimental data shows that the proposed model provides satisfactory predictions for both weakly and highly anisotropic shales including prepeak nonlinear behavior, failure strengths, and postpeak softening under different confining pressures and different bedding plane orientations.


2021 ◽  
pp. 105678952110339
Author(s):  
Jiaxing Cheng ◽  
Zhaoxia Li

Effective numerical analysis is significant for the optimal design and reliability evaluation of MEMS, but the complexity of multi-physical field couplings and irreversible damage accumulation in long-term performance make the analysis difficult. In the present paper, the continuum damage mechanics method is used to develop a creep damage model and conduct long-term performance analysis for MEMS thermal actuators with coupled thermo-mechanical damage behavior. The developed damage model can make a connection between the material deterioration due to microstructure changes and the macroscopic responses (the change of thermo-mechanical performance or structure failure). The numerical simulations of coupled thermo-mechanical behavior in long-term performance are implemented using the finite element method, which is validated through comparison with previous literature. The numerical results demonstrate that the proposed damage model and numerical method can provide effective assessment in the long-term performance of MEMS thermal actuators.


2013 ◽  
Vol 351-352 ◽  
pp. 1552-1557
Author(s):  
Da Guo Wang ◽  
Zhi Xiu Wang ◽  
Bing Xu

Based on micromechanics, an elastic-plastic-brittle damage model of concrete beam reinforced with stick steel is proposed by considering the aggregate gradation curve algorithms and the heterogeneity. In the model, the concrete beam reinforced with stick steel is taken as a five-phase composite material that consists of the mortar matrix, coarse aggregate, bonds between mortar and aggregate, steel plate, and the adhesive layer between steel plate and concrete beam. Through the numerical investigation on shear failure of concrete beam reinforced with stick steel under external force, the results show that the model can clearly simulate microscopic plastic yield, and the initiation and extension of crack. The strength of the steel plate is relatively stronger, so it cant enhance the shear capability of the each side of the beam and the concrete beam bears the larger shear stress, which results that a large number of elements, from the supports to the load points, begin to yield. When the strain of the elements exceeds the yield strength, the elements will produce failure until the failure of the whole specimen. The final failure mode of concrete beam reinforced with stick steel is the shear failure.


Author(s):  
Fabien Bernachy-Barbe ◽  
Lionel Gélébart ◽  
Michel Bornert ◽  
Jérôme Crépin ◽  
Cédric Sauder

2015 ◽  
Vol 784 ◽  
pp. 292-299 ◽  
Author(s):  
Stephan Wulfinghoff ◽  
Marek Fassin ◽  
Stefanie Reese

In this work, two time integration algorithms for the anisotropic damage model proposed by Lemaitre et al. (2000) are compared. Specifically, the standard implicit Euler scheme is compared to an algorithm which implicitly solves the elasto-plastic evolution equations and explicitly computes the damage update. To this end, a three dimensional bending example is solved using the finite element method and the results of the two algorithms are compared for different time step sizes.


2011 ◽  
Vol 21 (5) ◽  
pp. 713-754 ◽  
Author(s):  
M. S. Niazi ◽  
H. H. Wisselink ◽  
T. Meinders ◽  
J. Huétink

The Lemaitre's continuum damage model is well known in the field of damage mechanics. The anisotropic damage model given by Lemaitre is relatively simple, applicable to nonproportional loads and uses only four damage parameters. The hypothesis of strain equivalence is used to map the effective stress to the nominal stress. Both the isotropic and anisotropic damage models from Lemaitre are implemented in an in-house implicit finite element code. The damage model is coupled with an elasto-plastic material model using anisotropic plasticity (Hill-48 yield criterion) and strain-rate dependent isotropic hardening. The Lemaitre continuum damage model is based on the small strain assumption; therefore, the model is implemented in an incremental co-rotational framework to make it applicable for large strains. The damage dissipation potential was slightly adapted to incorporate a different damage evolution behavior under compression and tension. A tensile test and a low-cycle fatigue test were used to determine the damage parameters. The damage evolution was modified to incorporate strain rate sensitivity by making two of the damage parameters a function of strain rate. The model is applied to predict failure in a cross-die deep drawing process, which is well known for having a wide variety of strains and strain path changes. The failure predictions obtained from the anisotropic damage models are in good agreement with the experimental results, whereas the predictions obtained from the isotropic damage model are slightly conservative. The anisotropic damage model predicts the crack direction more accurately compared to the predictions based on principal stress directions using the isotropic damage model. The set of damage parameters, determined in a uniaxial condition, gives a good failure prediction under other triaxiality conditions.


Author(s):  
Iva´n C. Ca´bulo-Pe´rez ◽  
Juan P. Casas-Rodri´guez

The objective of this research is to study the damage behavior of bulk adhesive and single lap joint (SLJ) specimens during low cycle fatigue (LCF). Fatigue tests under constant stress amplitude were done and strain response was measured through cycles to failure using the bulk adhesive and SLJ data. A non linear damage model was used to fit experimental results. Identification of the damage parameters for bulk adhesive was obtained from the damage against accumulated plastic strain plot. It is shown that the plastic strain can be obtained from the constant stress test if the instantaneous elastic modulus, i.e. modulus affected by damage, is evaluated for each cycle. On the other hand, damage in SLJ was seen mainly in the adhesive for itself — no substrate failure — this fact is used to propose that fatigue response in the joint is due to continuum damage accumulation in the adhesive as the number of cycles increases. Damage behavior under compressive loads was not taken into account but good correlation of numerical and experimental data was obtained. It was found that damage evolution behaves in a non linear manner as the plastic deformation grows for each cycle: on fatigue onset an accelerated damage grow is observed, then a proportional evolution, and finally a rapid failure occurs; this characteristics were seen in both the SLJ and bulk adhesive specimen. So far, this research takes the damage model found in a standard adhesive specimen and assumes it is accurate enough to represent the damage behavior of the SLJ configuration.


Sign in / Sign up

Export Citation Format

Share Document