Reactive thermal evaporated amorphous tin oxide fabricated at room temperature and application in perovskite solar cells

Author(s):  
Zhigang Che ◽  
Ming Liu ◽  
Fengchao Li ◽  
Yanbin Shi ◽  
Yurong Zhou ◽  
...  
2018 ◽  
Vol 434 ◽  
pp. 1336-1343 ◽  
Author(s):  
Hong Tao ◽  
Zhibin Ma ◽  
Guang Yang ◽  
Haoning Wang ◽  
Hao Long ◽  
...  

Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 320 ◽  
Author(s):  
Wenhai Sun ◽  
Shuo Wang ◽  
Shina Li ◽  
Xu Miao ◽  
Yu Zhu ◽  
...  

Currently, tin oxide (SnO2) is a highly sought-after semiconductor material used in perovskite solar cells (PSCs) because of its good transmittance, the appropriate energy level, high electron mobility, high conductivity, ideal band gap and excellent chemical stability. In this study, SnO2 film was successfully prepared by radio frequency reactive magnetron sputtering (RS) under room temperature conditions. The obtained SnO2 thin films not only exhibited high transmittance in the visible region as well as the pure phase, but also had a suitable energy band structure and lower surface roughness than FTO (SnO2:F) glass substrate, which contributes to the improvement of the adjacent interface morphology. The SnO2 films prepared by reactive sputtering could effectively suppress carrier recombination and act as an electron transport layer. Moreover, the maximum efficiency of the device based on reactive sputtering of SnO2 as the electron transport layer (ETL) for planar perovskite solar cells (PSCs) was 14.63%. This study mainly described the preparation of SnO2 by reactive sputtering under room temperature conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


Solar Energy ◽  
2021 ◽  
Vol 218 ◽  
pp. 28-34
Author(s):  
Mahmoud Samadpour ◽  
Mahsa Heydari ◽  
Mahdi Mohammadi ◽  
Parisa Parand ◽  
Nima Taghavinia

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 329
Author(s):  
Wen Huang ◽  
Rui Zhang ◽  
Xuwen Xia ◽  
Parker Steichen ◽  
Nanjing Liu ◽  
...  

Zinc Oxide (ZnO) has been regarded as a promising electron transport layer (ETL) in perovskite solar cells (PSCs) owing to its high electron mobility. However, the acid-nonresistance of ZnO could destroy organic-inorganic hybrid halide perovskite such as methylammonium lead triiodide (MAPbI3) in PSCs, resulting in poor power conversion efficiency (PCE). It is demonstrated in this work that Nb2O5/ZnO films were deposited at room temperature with RF magnetron sputtering and were successfully used as double electron transport layers (DETL) in PSCs due to the energy band matching between Nb2O5 and MAPbI3 as well as ZnO. In addition, the insertion of Nb2O5 between ZnO and MAPbI3 facilitated the stability of the perovskite film. A systematic investigation of the ZnO deposition time on the PCE has been carried out. A deposition time of five minutes achieved a ZnO layer in the PSCs with the highest power conversion efficiency of up to 13.8%. This excellent photovoltaic property was caused by the excellent light absorption property of the high-quality perovskite film and a fast electron extraction at the perovskite/DETL interface.


2021 ◽  
Vol 21 (8) ◽  
pp. 4362-4366
Author(s):  
Ji Yong Hwang ◽  
Chung Wung Bark ◽  
Hyung Wook Choi

The perovskite solar cell is capable of energy conversion in a wide range of wavelengths, from 300 nm to 800 nm, which includes the entire visible region and portions of the ultraviolet and infrared regions. To increase light transmittance of perovskite solar cells and reduce manufacturing cost of perovskite solar cells, soda-lime glass and transparent conducting oxides, such as indium tin oxide and fluorine-doped tin oxide are mainly used as substrates and light-transmitting electrodes, respectively. However, it is evident from the transmittance of soda-lime glass and transparent conductive oxides measured via UV-Vis spectrometry that they absorb all light near and below 310 nm. In this study, a transparent Mn-doped ZnGa2O4 film was fabricated on the incident surface of perovskite solar cells to obtain additional light energy by down-converting 300 nm UV light to 510 nm visible light. We confirmed the improvement of power efficiency by applying a ZnGa2O4:Mn down-conversion layer to perovskite solar cells.


Author(s):  
Chunyan Wang ◽  
Jihuai Wu ◽  
Shibo Wang ◽  
Xuping Liu ◽  
Xiaobing Wang ◽  
...  

2017 ◽  
Vol 5 (25) ◽  
pp. 12729-12734 ◽  
Author(s):  
Yonghui Lee ◽  
Sanghyun Paek ◽  
Kyung Taek Cho ◽  
Emad Oveisi ◽  
Peng Gao ◽  
...  

The morphological, opto-physical and electrical properties of the SnO2layer in perovskite solar cells are investigated.


Author(s):  
César Omar Ramírez Quiroz ◽  
Carina Bronnbauer ◽  
Ievgen Levchuk ◽  
Michael Salvador ◽  
Yi Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document